Как выбрать частотный преобразователь для электродвигателя


Как выбрать частотный преобразователь для электродвигателя

Изменение скорости и направления вращения асинхронного двигателя – проблема, которую приходится решать в ряде задач. Для этого можно использовать преобразователь частоты. Это силовой преобразователь, к которому подключают асинхронные двигатели, в результате изменения частоты выходного напряжения изменяется и скорость вращения ротора двигателя. Правильное управление электроприводом позволяет повысить эффективность его применения. В этой статье мы расскажем, как выбрать частотный преобразователь для электродвигателя по мощности, току и другим параметрам.

На какие параметры обратить внимание

Сразу стоит отметить, что с помощью частотного преобразователя вы можете подключить асинхронный трёхфазный двигатель к однофазной сети без конденсаторов, соответственно и без потери мощности.

Чтобы понять, как правильно выбрать частотный преобразователь, давайте рассмотрим ряд основных параметров:

  1. Мощность. Подбирают большую, чем полная мощность двигателя, который будет к нему подключен. Для двигателя на 2.5 кВт, если он работает с редкими незначительными перегрузками или в номинале, частотный преобразователь выбирают ближайший в сторону увеличения из модельного ряда, допустим на 3 кВт.
  2. Количество питающих фаз и напряжение – однофазные и трёхфазные. К однофазным на вход подключается на 220В, а на выходе мы получаем 3 фазы с линейным напряжением 220В или на 380В (уточняйте какое выходное напряжение при покупке, это важно для правильного соединения обмоток двигателя). К мощным трёхфазным приборам подключается три фазы соответственно.
  3. Тип управления – векторное и скалярное. Частотные преобразователи со скалярным управлением не обеспечивают точной регулировки в широких пределах, при слишком низких или слишком высоких частотах могут изменяться параметры двигателя (падает момент). Сам же момент поддерживается так называемой ВЧХ (функция U/f=const), где напряжение на выходе зависит от частоты. Для частотников с векторным управлением применяются цепи обратной связи, с их помощью поддерживается стабильность работы в широком диапазоне частот. А также, когда при постоянной частоте изменяется нагрузка на двигатель, такие преобразователи частоты более точно поддерживают момент на валу таким образом снижая реактивную мощность двигателя. На практике чаще встречаются частотные преобразователи со скалярным управлением, например, для насосов, вентиляторов, компрессоров и прочего. Однако при повышении частоты выше чем в сети (50 Гц) момент начинает снижаться, говоря простым языком – некуда повышать напряжение с увеличением оборотов. Модели с векторным управлением стоят дороже, их основная задача – поддержание высокого момента на валу, независимо от нагрузки, что может быть полезным для токарного или фрезерного станка, для поддержания стабильных оборотов шпинделя.
  4. Диапазон регулирования. Этот параметр важен, когда вам нужно регулировать электропривод в широком диапазоне. Если вам, например, нужно подстраивать производительность насоса – регулировка будет происходить в пределах 10% от номинала.
  5. Функциональным особенности. Например, для управления насосом будет хорошо, если в частотном преобразователе будет функция отслеживания режима «сухого хода».
  6. Исполнение и влагозащищенность. Этот параметр определяет, где может быть установлен частотник. Чтобы сделать правильный выбор определитесь где вы его установите, если это будет сырое помещение – подвал, например, то лучше поместить прибор в щит с классом защиты IP55 или близкий к нему.
  7. Способ торможения вала. Инерционное торможение происходит при простом отключении питания от двигателя. Для резкого разгона и торможения применяется рекуперативное или динамическое торможение, за счет обратного вращения электромагнитного поля в статоре, или быстрое понижение частоты с помощью преобразователя.
  8. Способ отвода тепла. При работе полупроводниковые ключи выделяют достаточно большое количество тепла. В связи с этим их устанавливают на радиаторы для охлаждения. В мощных моделях используется активная система охлаждения (с помощью кулеров), что позволяет снизить габариты и вес радиаторов. Это нужно учесть еще до покупки, перед тем как вы решите выбрать ту или иную модель. Сперва определите где и как будет проведен монтаж. Если он будет установлен в шкафу, то следует учесть и то, что при малом объеме пространства вокруг прибора охлаждение будет затруднено.

Часто преобразователи частоты подбирают для глубинного насоса. Он нужен для регулирования производительности насоса и поддерживания постоянного давления, плавного пуска, контроля работы «на сухую» и экономии электроэнергии. Для этого есть специальные приборы, которые отличаются от частотников общего назначения.

Как рассчитать частотник под двигатель

Есть несколько способов расчета для выбора частотного преобразователя. Рассмотрим их.

Подбор по току:

Ток преобразователя частоты должен быть равен или большим чем ток для трёхфазного электродвигателя, потребляемый при полной нагрузке.

Допустим есть асинхронный двигатель с характеристиками:

  • P = 7,5 кВт;
  • U = 3х400 В;
  • I = 14,73 А.

Значит длительный выходной ток частотного должен быть равен или больше чем 14.73А. Расчет показывает, что это равняется 9.6 кВА при постоянной или квадратичной характеристике крутящего момента. Таким требованиям с небольшим запасом соответствует модель: Danfoss VLT Micro Drive FC 51 11 кВт/3ф, которую будет вполне разумно выбрать.

Выбор по полной мощности:

Допустим есть двигатель АИР 80А2, на табличке которого указано (для треугольника):

  • P= 1,5 кВт;
  • U=220 В;
  • I=6 А.

Рассчитаем S:

S=3*220*(6/1,73)=2283 Вт =2,3 кВт

Выбираем преобразователь частоты с хорошим запасом, при том что мы его будем подключать к однофазной сети и использовать для управления вращением шпинделя токарного станка. Ближайшая модель, которая для этого подойдет: CFM210 3,3 кВт.

Стоит отметить, что модельный ряд большинства производителей соответствует стандартному ряду мощностей асинхронных двигателей, что позволит сделать выбор частотника с соответствующей мощностью (не превышающей). Если вы используете заведомо более мощный двигатель и не нагружаете его полностью, можно измерить фактический ток потребления и подобрать преобразователь частоты исходя из этих данных. В общем при расчёте частотника для двигателя учитывайте:

  1. Максимальный потребляемый ток.
  2. Перегрузочную способность преобразователя.
  3. Тип нагрузки.
  4. Как часто и насколько долго могут возникать перегрузки.

Теперь вы знаете, как выбрать частотный преобразователь для электродвигателя и на что обратить внимание при выборе данного типа устройств. Надеемся, предоставленные советы помогли вам подобрать подходящую модель под собственные условия!

Материалы по теме:

samelectrik.ru

Как выбрать частотный преобразователь для электродвигателя

Экология познания.Наука и техника: Асинхронные двигатели применяются сегодня достаточно широко, а современные частотные преобразователи призваны сделать их работу более эффективной, устойчивой и безопасной.

Асинхронные двигатели применяются сегодня достаточно широко, а современные частотные преобразователи призваны сделать их работу более эффективной, устойчивой и безопасной. В каждом конкретном случае режим работы асинхронного двигателя свой, и особенности этих режимов отличаются, в связи с этим полезно оптимизировать параметры питания двигателей, чему и способствует применение частотных преобразователей.

При выборе частотного преобразователя для конкретной цели, необходимо учесть ряд рабочих параметров: мощность электродвигателя, его тип, диапазон регулировки скорости и точность этой регулировки, точность поддержания момента на валу. Это первостепенные параметры для выбора. Дополнительно стоит обратить внимание на габариты и форму устройства, а также на расположение элементов управления, будет ли оно удобным в вашей ситуации.

Частотные преобразователи бывают однофазными или трехфазными. И даже если на вход подается всего одна фаза, на выходе может быть как одна, так и три фазы. Обязательно обратите на это внимание при выборе частотного преобразователя.

Что касается мощности асинхронного двигателя, то она связана с максимальным потребляемым током, на который и следует ориентироваться. Если при старте двигателя требуется получить значительный пусковой момент на валу, то в этом случае и ток нужен больший, значит, имеет смысл выбрать частотный преобразователь на большее значение тока. Быстрый разгон и резкое торможение напрямую связано с током, если преобразователь в состоянии дать необходимый ток, значит, по этому параметру он вам подходит.

Для специальных двигателей, как то: погружные насосы, синхронные двигатели, с втяжным ротором, высокоскоростные, - максимальный ток частотного преобразователь должен быть лишь немного выше номинального тока двигателя.

Когда параметры нагрузки заранее известны и не меняются при постоянной частоте (например это могут быть вентиляторы, насосы, компрессоры, то есть те механизмы, которые отвечают за поддержание определенного состояния технологического процесса), то есть момент зависит непосредственно от частоты, применяют скалярный метод частотного регулирования с диапазоном от 5 до 50 Гц и выше.

К примеру, компрессор должен поддерживать определенное давление, и датчик давления, отслеживая текущее состояние в текущем режиме, дает сигнал на изменение оборотов, - обороты компрессора меняются, следовательно, меняется и нагрузка, эту возможность дает опция обратной связи.

Для более точного управления, когда требуется поддерживать постоянный момент или скорость даже на низких частотах, применяют частотные преобразователи с векторным регулированием. Они могут поддерживать скорость постоянной даже при резко меняющейся нагрузке, и это уже более сложное управление.

В основном частотные преобразователи с векторным управлением подходят для приведения в действие конвейеров, лифтов, транспортеров, строительной техники, прессов, станков, и другого оборудования, требующего постоянной скорости при переменной нагрузке. Могут такие преобразователи поддерживать и постоянный момент при меняющейся скорости.

Преобразователь с векторным управлением требует настройки, то есть ввода паспортных данных подключенного двигателя. В процессе работы происходит автоматическое регулирование на основе текущей информации о токе, напряжении и частоте. Векторный метод регулирования позволяет снизить реактивный ток двигателя до оптимального путем соответствующего понижения или повышения напряжения на двигателе.

Частотные преобразователи с обратной связью по скорости позволяют прецизионно регулировать скорость, когда нагрузка при одной и той же частоте может меняться, и момент вообще не связан напрямую со скоростью. У таких преобразователей возможна и регулировка скорости в широком диапазоне при моментах близких к номиналу.

К дополнительным опциям частотных преобразователей можно отнести возможность подключения по протоколам MODBUS, PROFIBUS, CANOPEN, а также управление посредством Bluetooth. Встречаются частотные преобразователи с выносным потенциометром, с возможностью управления с компьютера, и с функцией сохранения настроек.опубликовано econet.ru

econet.ru

выбор и расчёт, управление, сборка своими руками

Одним из главных недостатков асинхронных двигателей является сложность регулировки частоты вращения. Изменять её можно тремя способами: изменением количества пар полюсов, изменением скольжения и изменением частоты. В последнее время для регулирования скорости вращения асинхронного короткозамкнутого двигателя частоту тока меняют с помощью частотных преобразователей для электродвигателя.

Понятие о принципе работы частотника

В последнее время на производстве стали широко использоваться высокочастотники, у многих неопытных новичков, встречающих их на практике, часто возникает вопрос, что такое частотный преобразователь и для чего он нужен. Достоинствами частотного привода для электродвигателя являются:

  • снижение электропотребления двигателем;
  • улучшение показателей работы: плавность запуска и регулировки скорости вращения;
  • исключение возможных перегрузок.

Плавность пуска обеспечивается преобразователем благодаря снижению с его помощью пускового тока, который без частотника превышает номинальный ток в 5–7 раз.

Основными частями в устройстве преобразователя являются инвертор и конденсаторы. Инвертор обычно выполнен из диодных мостов. Его задача — выпрямить напряжение на входе, которое может принимать значение 220В или 380В в зависимости от количества фаз, но сохранить при этом пульсации. Затем конденсаторы выпрямленное напряжение сглаживают и фильтруют.

Потом постоянный ток отправляется на микросхемы и выходные мостовые IGBT-ключи. Обычно мостовой IGBT-ключ — это шесть транзисторов, соединённых по мостовой схеме. Защиту от пробоя напряжения обратной полярности осуществляют диоды. В более ранних схемах вместо транзисторов были использованы тиристоры, значительными недостатками которых были некоторая замедленность в работе и помехи.

Благодаря этим устройствам возникает широтно-импульсная последовательность с необходимой частотой. На выходе частотника импульсы напряжения имеют прямоугольный вид. А после того как они проходят через обмотку статора, вследствие её индуктивности, принимают синусоидальный вид.

Чтобы понять, зачем нужен инвертор, необходимо уяснить, что ток бывает постоянным и переменным. И если преобразователи частоты используются при работе с переменным током, то для управления электромотором постоянного тока необходим электропривод постоянного тока. Он называется инвертором и его назначением в схеме является контроль тока возбуждения. И он также независимо от изменений нагрузки может поддерживать скорость вращения ротора в требуемых пределах и осуществлять его торможение.

Советы по выбору частотников

При выборе частотника наиболее низкая стоимость определена набором минимальных функций. Рост стоимости пропорционален их увеличению.

Первоначально преобразователи классифицируют по мощности. Не менее важными параметрами являются перегрузочная способность и тип исполнения.

Мощность частотника должна быть не меньше максимальной мощности установки. Для оперативного ремонта или замены в случае поломки частотного привода для электромотора желательно, чтобы сервис-центр был расположен в непосредственной близости.

При выборе преобразователя немаловажным фактором является его напряжение. Если подобрать частотник определённого напряжения, а в сети оно окажется более низким, то он будет отключаться. Если же напряжение сети будет длительно допускать допустимое напряжение, то это приведёт к его повреждению и невозможной дальнейшей работе. С учётом этих рисков нужно выбирать частотники с большим интервалом допустимого напряжения.

Существует два типа управления преобразователей: векторное и скалярное.

При скалярном управлении удерживается постоянство между значением напряжения и частоты на выходе. Это наиболее простой тип частотников, и, вследствие этого, более дешёвый.

При векторном управлении из-за снижения статической ошибки управление осуществляется более точно. Но и стоимость асинхронного преобразователя частоты с этим видом управления более высока в сравнении со скалярным управлением.

Зона регулирования частоты тока должна быть в необходимых пределах. Для диапазонов с регулировкой по частоте более, нежели в 10 раз лучше выбрать векторное управление.

Количество вводов должно быть оптимальным, потому как при слишком большой их численности цена прибора для изменения частоты будет неоправданно завышена, а также могут возникнуть некоторые сложности при его настройке.

Необходимо учесть перегрузочные способности частотника по току и мощности. Ток частотника должен быть чуть больше, нежели номинальный ток двигателя. В случае возникновения ударных нагрузок необходим запас по пиковому току, который должен быть не менее 10% от ударного тока.

Расчёт частотника для электродвигателя

Для того чтобы преобразователь частоты имел возможность работать надёжно и соблюдать заданные значения, необходимо рассчитать его основные параметры:

  • тип исполнения;
  • ток;
  • мощность.

Расчёт тока преобразователя производится по формуле:

где Р – номинальная мощность двигателя, квт;

U – напряжение, В

сosφ – значение коэффициента мощности

Правильный выбор мощности прибора для изменения частоты сказывается на эффективности работы установки. При заниженной мощности частотного преобразователя производительность оборудования будет невысокой. Длительные перегрузки при работе могут привести к поломке преобразователя частоты.

При завышенной мощности частотного преобразователя и скачках напряжения или перегрузке не сработает защита электродвигателя, что приведёт к его повреждению. U

Мощность частотника должна быть больше номинальной мощности соответствующего двигателя на 15%.

Необходимые материалы для самодельного частотника

Изготовить частотник своими руками практически возможно. Для этого нужно определиться с основными деталями, приобрести их, изучить схему сборки. Затем приступить к процессу изготовления.

В начале работы необходимо запастись двумя платами. На одной из плат необходимо установить микроконтроллер и индикатор. На второй — транзисторы, диодный мост, входные клеммы, блок питания и драйвер. Между собой платы необходимо соединять гибким проводом.

Питания будет производиться с помощью импульсного блока.

Для управления маломощным мотором достаточно будет установки токового шунта и подключённого к нему усилителя DA-1. Сечение жил токового шунта составляет полмиллиметра. Для двигателей с более высокой мощностью установки токового шунта недостаточно и поэтому необходимо устанавливать трансформатор.

При мощности двигателей более 0,4 КВт необходима установка термодатчиков.

Микросхема IL300 с линейной развязкой позволяет контролировать параметры электродвигателя.

Оптроны типа ОС2–4 необходимы для дубляжа управляющих кнопок.

В результате эксплуатации вследствие большой протяжённости проводов могут возникать помехи. Устранить их можно с помощью специальных колец для удаления помех.

Подключение и настройка

При подключении асинхронного преобразователя частоты в сеть однофазного тока клеммы двигателя необходимо соединить в «треугольник». Эта схема соединения подразумевает присоединение конца и начала соседних обмоток. Напряжение питания при этом будет 220 В. Выходной ток необходимо удерживать в пределах не более половины его номинального значения.

Если частотник подключается к трехфазной сети, то клеммы двигателя соединяются в «звезду». При этой схеме соединения концы трёх фаз обмоток соединяются в одну точку. Напряжение от сети принимает значение 380В.

Очерёдность подключения общей электрической цепи будет следующей:

  1. дифференциальный автоматический выключатель, ток которого совпадает с номинальным током двигателя;
  2. преобразователь частоты;
  3. электродвигатель.

При работе с трехфазной сетью автоматический выключатель должен быть снабжён общим рычагом по всем трём фазам. В таком случае перегрузка одной из фаз будет устранена выключением всего питания. Допустимый ток срабатывания должен быть рассчитан на основе значения тока двигателя в одной фазе.

При установке преобразователя в однофазную сеть допустимый ток автоматического выключателя должен превышать в три раза значение фазного тока.

Подключается преобразователь к электромотору с помощью магнитного пускателя. Выбирается магнитный пускатель по напряжению сети и номинальному току.

Перед монтажом пульта управления его рычаг должен быть в положении «Выключено». При включении рычага обязательным условием есть появление сигнала на световом индикаторе. Клавишей RUN производится запуск частотника. А рукоятка пульта управления контролирует изменение числа оборотов ротора двигателя.

Следует с особым вниманием изучить значение частоты на частотнике, так как на одних моделях указывается частота вращения ротора электродвигателя, а на других приведена частота тока преобразователя.

Настройка частотного преобразователя для электродвигателя начинается с внимательного изучения инструкции, так как в ней указана последовательность этих операций.

Для того чтобы настроить частотный преобразователь для электродвигателя, необходимо произвести правильный выбор типа проводов и верный размер их сечения.

Перед настройкой частотника необходимо правильно обнаружить и подключить входные и выходные клеммы. Входные клеммы маркируются буквой L с указанием нумерации фазы. Выходные клеммы обозначены латинскими буквами — U, V, W.

Так как параметров у преобразователя заводского исполнения довольно-таки много, частично его настройка производится на заводе. Остальные параметры настраиваются вручную. Основные этапы настройки частотного преобразователя:

  • подача питания на частотный преобразователь;
  • выбор определённого режима работы;
  • установка значений рабочих характеристик оборудования.

Эксплуатация частотника

Правильный порядок эксплуатации преобразователя частоты заключается в выполнении основных операций:

  • Систематическая очистка частотного привода для электродвигателя от пыли и грязи.
  • Регулярно менять детали, срок годности которых истекает.
  • Постоянный контроль напряжения и температуры.
  • Работа устройства должна проходить при заданных условиях: не превышать допустимый уровень пыли, влажности, температуры окружающей среды.

Нежелательным является попадание прямых солнечных лучей на частотник, отсутствие достаточной вентиляции. Материалы и жидкости, которые достаточно легко воспламеняются, не должны находиться рядом с ним. В помещении регулярно должна проводиться обработка против грызунов. Место установки частотного привода для электродвигателя не должно иметь шероховатостей, позволять вибрации.

Частотники для двигателя мощностью около 3 КВт являются наиболее распространёнными ввиду компактности, относительно невысокой цены, простоты установки и обслуживания

Собирать вручную частотники для двигателей мощностью 3 КВт и больше нет смысла — они будут довольно дорогими по цене и не всегда обеспечивать необходимую точность в работе.

Для двигателей мощностью 3 КВт преобразователи частоты находят применение:

  • в системах вентиляции для контроля скорости вращения вентилятора;
  • для одновременности работы принимающего и подающего конвейеров;
  • для подачи сырья с контролем его объёма;
  • для управления несколькими насосами;
  • для контроля работы погружным насосом;
  • для регулировки скорости подачи сырья в дробилках.

Частотники для двигателей большей мощности отличаются величиной максимальной выходной частоты, наличием фильтра электромагнитной совместимости (ЕМС), видом режима управления.

Например, у частотного привода для электродвигателя мощностью 15 КВт максимальная выходная частота меньше, нежели у преобразователя для двигателя мощностью 3 КВт. ЕМС фильтр для такого двигателя не предусмотрен. Режим управления только скалярный.

chebo.pro

Выбор частотного преобразователя

 

Частотный преобразователь (регулируемый электропривод) обеспечивает две его основные и взаимосвязанные функции: управление технологическим процессом рабочей установки в соответствии с предъявляемыми к нему требованиями и электромеханическое преобразование энергии с максимальной ее эффективностью. Реализация этих функций требует особого подхода к выбору и эксплуатации регулируемого электропривода по сравнению с нерегулируемым. Теоретические аспекты такого подхода хорошо известны специалистам в области автоматизированного электропривода (АЭП), Однако, за последние годы произошло заметное сокращение числа специализированных проектных организаций и отток из них наиболее квалифицированных специалистов в области электропривода.  Исчезла согласованность проектных и наладочных организаций, их разобщенность стала приводить к повторным ошибкам, а опыт ввода в эксплуатацию электроприводов стал практически (по конъюнктурным соображениям) ограничен для других специалистов.

Обоснование мощности н типа электрических двигателей и частотных преобразователей.

Регулирование технологических координат с высокой статической и динамической точностью требует от электропривода дополнительного запаса по его динамической мощности. Последняя должна выбираться с учетом его реальных нагрузочных диаграмм, включая и динамические составляющие моментов, связанные с изменением приведенного к валу электродвигателя момента инерции. При модернизации электропривода, связанной с заменой одного типа привода на другой, следует учитывать и разницу в перегрузочных способностях по току, моменту и моментах инерции заменяемых электродвигателей. Наиболее актуальны эти замечания для приводов, работающих в повторно-кратковременных режимах работы и на валу которых по технологии рабочей установки имеют место скачкообразные изменения нагрузок.

Распространенной ошибкой является выбор мощности частотного преобразователя питающего электродвигатель по реальной эксплуатационной мощности этого же двигателя в разомкнутой системе управления. При этом из-за ограничения максимально допустимого тока преобразователя возникает проблема обеспечения требуемых динамических показателей привода при введении обратных связей по регулируемым координатам.

Выбор частотных преобразователей на технологическую мощность привода, заметно меньшую номинальной установленной мощности электродвигателя, усугубляет и проблему автоматической идентификации значений его параметров и параметров регуляторов системы управления электроприводом с помощью встроенного в преобразователи их программного обеспечения. При несовпадении предварительно установленных граничных значений параметров двигателя близкого по мощности преобразователю его программное обеспечение либо указывает на невозможность идентификации параметров электродвигателя и блокирует работу преобразователя совместно с двигателем, либо вносит заметные погрешности в свою математическую модель двигателя, на основе которой вычисляются режимы работы и ограничения переменных электропривода. В итоге динамические показатели и эксплуатационная надежность электропривода снижаются.

При выборе частотных преобразователей, работающих в регулируемом электроприводе с высоко динамичными и повторно-кратковременными режимами, не редко игнорируется необходимость обеспечения рекуперации энергии со стороны электродвигателя в питающую сеть, либо на активную нагрузку. Такие преобразователи должны иметь либо двухсторонний обмен энергией между двигателем и питающей преобразователь сетью (ПЧ с непосредственной связью, на основе автономных инверторов тока, с блоком рекуперации на входе инвертора), либо иметь дополнительный резистор для сброса на него рекуперируемой энергии. Создание многодвигательного привода с единой шиной постоянного тока для питания инверторов ПЧ и установкой общего инвертора постоянного тока на неполную суммарную мощность привода способствует решению подобной проблемы. Понятно, что стоимость таких преобразователей возрастает, но технология работы установок и особенно требования их экстренного останова при аварийных режимах или опасности жизнедеятельности обслуживающего персонала вынуждает идти на дополнительные затраты.

Регулирование скорости привода переменного тока отражается и на ухудшении условий охлаждения электродвигателей с самовентиляцией при уменьшении их скорости. Российская электротехническая промышленность, к сожалению, отстает от производства специальных машин переменного тока при их питании от управляемых ПЧ. В итоге это заставляет либо увеличивать установленную мощность двигателей, либо решать в экстренных ситуациях проблему их дополнительного охлаждения.
Одна из особенностей питающих сетей крупных металлургических комбинатов России связана с тем, что их номинальное напряжение достигает 10 кВ. Это создает заметные трудности при замене нерегулируемого электропривода переменного тока на регулируемый, поскольку в отечественной промышленности отсутствует выпуск ПЧ с выходным напряжением до 10 кВ. Актуальность их создания весьма велика.

Для мощных технологических установок, где окружающая среда отличается повышенной влажностью или наличием токопроводящих Частиц, наметилась тенденция заказа со стороны эксплуатационного персонала низковольтного исполнения электропривода. Подобное решение способствует заметному снижению эксплуатационных затрат на его обслуживание при увеличении надежности и безопасности электрооборудования.

 

Согласование преобразователей частоты с питающей их сетью и электродвигателем.

Возможность резких колебаний и искажений напряжения и тока питающей преобразователи сети из-за коммутационных режимов (включении и отключении питающего преобразователь трансформатора, коммутации вентилей и т.п.) заставляет принимать специальные защитные меры по ограничению их влияния на работу преобразователя и системы его управления. К числу подобных мер относятся установка на входе преобразователя силовых токоограничивающих реакторов, защитных RC-цепей или варисторов. Актуальность обоснования и выбора их параметров сохраняется и до сих пор.

Особенно это проявляется при замене отечественных преобразователей на преобразователи иностранных фирм, когда сохраняются питающая сеть со всеми реальными для нее отклонениями напряжения и основные силовые элементы отечественного производства (трансформаторы, коммутационная аппаратура, электродвигатели) с параметрами (индуктивностью, емкостью, временем коммутации и т.п.), отличающимися от зарубежных.

Наличие промежуточного повышающего трансформатора на выходе ПЧ для питания электродвигателя с более высоким напряжением на статоре, чем выходное напряжение преобразователя, создает ряд проблем, связанных с дополнительным нагревом этого трансформатора из-за высокочастотных составляющих выходного тока преобразователя, с первоначальным пуском двигателя и выбором начальной частоты и выходного напряжения преобразователя. Они усиливаются для технологических установок с активным моментом сил сопротивления и требующих по технологии применения структур векторного управления электроприводом.

Внедрение ПЧ с широтно-импульсно

prom-electric.ru

Выбор частотных преобразователей, диапазон регулирования частоты

Нюансы выбора частотного преобразователя:

  • В том случае, если при выборе пользователь ошибся с мощностью, и она оказалась завышена, преобразователь не сможет защитить двигатель от возможного перегруза, скачков напряжения и прочих факторов.
  • Меньшая мощность не создаст условия для хорошей эффективности машины. Преобразователь с небольшой мощностью не сможет обеспечить высокую динамику рабочего режима насосной установки. Возникающие периодически перегрузки могут послужить причиной неисправности.

Факторы, на которые обращают внимание при выборе

Условия эксплуатации устройства являются существенным фактором, влияющим на сроки эксплуатации электродвигателя. Поэтому, выбирая преобразователь частоты, нужно обратить внимание на такие факторы:

  • границы рабочих скоростей электрического двигателя;
  • рабочие границы моментов вращения;
  • характер нагрузки;
  • циклограмму работы.

Все характеристики взаимосвязаны между собой. Так, нагрузка имеет несколько типов и связана с такими характеристиками, как скорость, момент и пусковой момент. Она бывает:

  • функциональной или служит для подъема грузов, например, мостовой кран, электродвигатель может быть подключен от ПЧ;
  • вязкая нагрузка;
  • нагрузка с высокой силой инерции;
  • нагрузка с передачей и накоплением энергии.

Скорости вращения и момента связаны со скоростью, моментом и параметрами времени, они зависят от следующих характеристик:

  • величина постоянного момента;
  • постоянная величина скорости;
  • уменьшающееся число крутящего момента;
  • уменьшающаяся скорость.

Характер нагрузки зависит от таких показателей, как:

  • ударная нагрузка;
  • постоянная нагрузка;
  • изменяющаяся периодами нагрузка;
  • высокий начальный момент;
  • низкий начальный момент.

Особенности при расчете ПЧ для электродвигателя

Прежде, чем выбрать преобразователь частоты выполняют выбор и расчет преобразователя частоты для электродвигателя. Обязательно обращают внимание на продолжительность скоростных режимов, в том числе и на повторно-кратковременный режим. Необходимо принимать во внимание мгновенную величину максимального тока и на длительность постоянного тока на выходе с преобразователя.

Важно учитывать максимальную и номинальную частоту. Принимается во внимание мощность или импендас силового распределительного трансформатора вместе с проводами линии электропередач или кабельной линией. Источник питания влияет на работу частотника и насосной установки, длина питающей линии оказывает влияние на потери напряжения. Учитываются возможные скачки напряжения, возможный перекос фаз при неравномерной нагрузке, влияющий на фазный дисбаланс.

Учитываются такие факторы, как механическое трение, потери в проводнике и изменение рабочего цикла.

Выбор частотных преобразователей на насосы

Важно произвести правильный расчет преобразователя частоты и совмещение его с насосной установкой. Расчет будет влиять на правильный выбор преобразователя. От этого зависит его эффективность и долговечность использования, как самого преобразователя, так и электропривода (насосной установки) полностью.

Как выбрать ПЧ перед тем, как его купить

Перед тем, как выбрать частотный преобразователь,проверяют электрическую совместимость с двигателем и нагрузочной способностью (мощностью).

Рис. №1. Структурная схема работы системы насосных агрегатов от преобразователя частоты VFD.

При работе преобразователя частоты с одним двигателем выбор проводят в зависимости от паспортных характеристик. При выборе учитываются такие показатели, как:

  1. Мощности по паспорту ПЧ и электродвигателя должны быть равными. Этот параметр действует в случае использования двигателей с двумя парами полюсов (2p=4), со скоростью вращения до 1500 об/мин, с постоянным моментом. Он же действует и для ПЧ, которые могут справиться с перегрузом в 150% (конвейеры, транспортерные ленты) и для преобразователей, работающих с перегрузом 120% (вентиляторы, центробежные насосы).
  2. Величина номинального тока должна быть равной и быть больше продолжительного фактического тока, который потребляется двигателем (тока нагрузки).

Важно: потребляемый двигателем ток должен быть меньше номинального тока преобразователя частоты, приведенного в спецификации.

Время разгона двигателя при пусковом токе 150% составляет 120% для преобразователей, специализирующихся в насосных агрегатах, от номинального ПЧ обычно не должно превышать 60сек.

  1. Входное напряжение сети должно удовлетворять преобразователь, он должен сохранять свою работоспособность при любых отклонениях напряжения от нормы.
  2. Диапазон регулирования частот, который может поддерживать преобразователь должен удовлетворять высокоскоростному режиму двигателя.
  3. Наличие дискретных входов управления необходимо для ввода различного рода команд, запрограммированных пользователем. Нужны и аналоговые, служат для ввода сигналов задания и для обратной связи. Необходимы и цифровые входы, служащие для высокочастотных сигналов, поступающих от энкордеров или цифровых датчиков скорости и положения.
  4. Число выходных сигналов служат для создания сложных схем для системы насосных станций.
  5. Возможность оперативного управления в рабочем режиме, это могут быть входы управления с помощью пульта. Или управление с помощью шины последовательной связи посредством контроллера или компьютера. Может быть это будет комбинированное управление.
  6. Выбор преобразователя зависит от предпочтения способа управления электродвигателем, скалярное или векторное управление. Зависит раздельного векторного управления двигателями или скалярное управление – поддержание одного постоянного отношения выходного напряжения к выходной частоте. Для насосных агрегатов более свойственен способ векторного управления.
  7. К более точным критериям выбора частотника принадлежит параметр, определяющий работу двигателя на установившейся скорости. При работе преобразователя с одним двигателем необходимая мощность для запуска рассчитывается по формуле:

Рис. №2. Формула расчета полной пусковой мощности.

Ток потребления двигателем от преобразователя при сетевом напряжении 220/380В рассчитывают по формуле:

Рис. №3. Расчет механических характеристик двигателя.

Важно: Руководствуясь требованием, как правильно выбрать преобразователь частоты по токовым характеристикам, требуется соответствие ПЧ всем нормам и требованиям, но нормами по мощности разрешается пренебречь.

Рис. №4. Таблица неравенств, которые необходимо соблюдать при выборе ПЧ для работы одного частотника с несколькими двигателями.

 Преимущества применения частотного преобразователя

Рис.№5. Преимущества выбора частотного преобразователя

К достоинствам частотного преобразователя относятся несколько важных качеств:

  1. Снижение пускового тока до фактической рабочей величины. Условия питания электрического двигателя напрямую от сети и питание от преобразователя отличаются. В первом случае, пусковой ток увеличивается не менее, чем в семь раз от номинального значения тока двигателя. Плавный пуск с постепенным плавным нарастанием частоты сетевого напряжения питания двигателя может быть понижен до фактического, потребляемого двигателем в установившемся рабочем режиме. Достигается это установкой времени разгона, если необходимо разогнать инерционную нагрузку преобразователь может обеспечить большую мощность, чем мощность двигателя.
  2. Существуют модели преобразователей, максимально ориентированных для работы на нагрузку с переменным моментом, а именно, для насосных станций, укомплектованных центробежными насосами. Номинальный ток преобразователя может быть более, чем на две ступени выше паспортных показателей двигателя.
  3. Использование частотного преобразователя для запуска насосных агрегатов дает экономию электроэнергии минимум 30%.

Недостатки векторных частотных преобразователей:

  1. Сложность настройки векторного преобразователя, необходима консультация специалиста. Производится учет параметров электродвигателя, в том числе и индуктивности.
  2. Технология использования электропривода должна подразумевать 100% точность, только в этом случае оправдан выбор ПЧ.
  3. Выбирая векторный преобразователь, нужно не забыть перейти со скалярного режима.
  4. Высокие требования к точности измерительных приборов и датчиков тока, что сказывается на стоимости.
  5. Векторный ПЧ желательно использовать для конкретного электродвигателя.

chistotnik.ru

Выбор преобразователя частоты для электродвигателя. Основные моменты

Критерии выбора
Мощность
Питающее напряжение
Диапазон регулирования
Режим торможения
Способы управления электродвигателем

Правильный выбор преобразователя частоты позволит сократить текущие производственные расходы и, одновременно, повысить производительность технологического оборудования.

Преимущества использования частотных преобразователей

  • экономичное потребление энергоресурсов;
  • минимальные затраты на техническое обслуживание при соблюдении требований, установленных производителем;
  • повышение качества оперативного управления действующими мощностями;
  • постоянный контроль за важными технологическими процессами;
  • увеличение эксплуатационного ресурса электроприводов и другой сложной техники, в среднем, на 35%.

Критерии выбора

К сожалению, четкого перечня критериев, позволяющих выбрать преобразователь частоты, не существует. Это объясняется спецификой разных типов промышленного оборудования. Для каждой единицы техники, эксплуатируемой на заводах, фабриках, предприятиях малого бизнеса, действуют свои условия и ограничения. Поэтому выбор технических параметров преобразователя частоты в каждом случае индивидуален.

Ключевой критерий – тип исполнительного механизма. Сориентироваться в остальных параметрах помогут универсальные рекомендации, приведенные ниже.

Мощность

Важнейшим параметром электропривода является его мощность. Именно поэтому перед тем, как выбрать частотный преобразователь для электродвигателя, следует определиться с нагрузочной способностью оборудования. Мощностные показатели ПЧ должны соответствовать значению номинальной мощности двигателя. При этом нагрузка на валу не должна подвергаться динамическим изменениям. Другими словами, частотник подбирается, исходя из следующих параметров:

  • максимального значения тока, потребляемого электроприводом от частотника;
  • перегрузочной способности преобразователя;
  • планируемого типа нагрузки;
  • уровня, длительности и частоты появления перегрузок.

Питающее напряжение

Не менее важным является и такой показатель, как питающее напряжение. Как правило, оборудование запитывается от трехфазной промышленной электросети напряжением 380 В. Также встречаются приводы, адаптированные для работы от однофазной сети 220/240 В.

Кроме того, на данный момент в каталогах производителей имеются модернизированные серии приводов, предназначенные для эксплуатации в высоковольтных сетях. Мощность такого оборудования измеряется в мегаваттах.

Диапазон регулирования

В случае, когда показатели скорости вращения электродвигателя не опускаются ниже 10% от номинала, подбор преобразователя частоты не предусматривает соблюдения каких-либо специальных условий. Однако в ситуации, требующей дальнейшего снижения скорости при соблюдении номинального крутящего момента на валу, важно убедиться в том, что ПЧ сможет обеспечить работу на частотах, приближенных к нулю.

Режим торможения

Инерционное торможение по своим характеристикам схоже с отключением электродвигателя от питающей сети. Оба процесса могут занять немало времени, но, правильно подобрав преобразователь частоты и опции к нему, можно выполнить останов или торможение двигателя с переходом на более низкую скорость за короткий промежуток времени.

Способы управления электродвигателем

Ряд механизмов предусматривают эксплуатацию с управлением от задающего сигнала при условии плавного изменения оборотов электрического двигателя. Иногда необходима работа на фиксированных скоростях. Оба этих момента предусматривают управление как с пульта управления преобразователя частоты, так и с применением клемм цепей управления ПЧ, кнопок, потенциометров, переключателей, устройств автоматики.

Все вышеперечисленные аспекты выбора частотника не являются исчерпывающими. При подборе также важно учитывать наличие функции индикации параметров, полноту защитных функций, особенности монтажа и установки ПЧ, возможность автоматической настройки, условия использования устройства, наличие различных интерфейсов связи.

Другие полезные материалы:
Как правильно подобрать электродвигатель
Редуктор от «А» до «Я»
Как выбрать мотор-редуктор
Подключение и настройка частотного преобразователя

tehprivod.su

Преобразователи частоты. 12 важных вопросов при выборе и установке

Преобразователи частоты (ПЧ) — один из основных элементов комплексных решений для энергетических и промышленных проектов. Современные частотные преобразователи — это продукт высоких технологий, они выпускаются с применением новейших разработок и способны не только управлять скоростью вращения электродвигателя, но и защищать электропривод от преждевременного выхода из строя, обеспечивать контроль множества параметров во время его работы. Грамотно выбрать преобразователь частоты, сориентировавшись в многообразии предложений — задача сложная и ответственная, ведь от принятого решения зависит стабильность производственных процессов. Разобраться со всеми тонкостями выбора поможет эта статья.

Часть 1. Зачем нужен преобразователь частоты?

Частотный преобразователь — незаменимое оборудование в любой сфере, где используются электродвигатели. Он обеспечивает плавный пуск, непрерывное автоматическое регулирование скорости и момента во время работы, а также множество других параметров работы электродвигателя. В ряде применений преобразователи обеспечивают снижение потребления электроэнергии до 50 %. Современные ПЧ с широтно-импульсной модуляцией (ШИМ) способны снижать пусковые токи в среднем в 4-5 раз и выдерживать перегрузки до 200 %.

На сегодняшний день в интернете можно найти большое количество рекомендаций и советов по подбору ПЧ, однако в большинстве случаев они являются общими, неконкретными и никак не применимыми на практике. Как же сориентироваться в огромном количестве критериев и выбрать подходящее оборудование? Рекомендации дают специалисты IEK GROUP, одного из ведущих российских производителей и поставщиков электротехнического оборудования: Артем Мошечков (ведущий инженер) и Петр Ивлев (специалист по техническому обучению Академии IEK GROUP).

— Зачем устанавливать и использовать преобразователь частоты?

Артем Мошечков: «Данное оборудование решает сразу несколько задач: управляет скоростью вращения электродвигателя, защищает его и в определенных режимах обеспечивает энергосбережение. ПЧ снижает слишком большой пусковой ток и момент, исключая удары, рывки и повышенные механические нагрузки на привод. Также преобразователь частоты позволяет защищать электродвигатель при коротком замыкании, страхует при отклонениях от номинального напряжения сети, контролирует температуру механизма, не допускает перегрева. Таким образом ПЧ обеспечивает более длительную и надежную работу привода, минимизирует затраты на обслуживание и ремонт. Кроме того, в определенных сферах применения и режимах работы преобразователь частоты снижает потребление электроэнергии на 30-50 %».

— Есть задача: выбрать и купить преобразователь частоты. С чего начать?

Петр Ивлев: «Модельный и функциональный ряд современного оборудования предлагает множество вариантов для решения широкого спектра задач. От самых простых до обеспечивающих управление сложнейшими автоматизированными электроприводами. Существует несколько основных критериев, основываясь на которых следует принимать решение о выборе той или иной модели частотного преобразователя».

Чтобы подобрать нужный вариант ПЧ, необходимо прежде всего определиться: для каких именно целей выбирается оборудование, какие конкретные задачи оно должно выполнять. Разумеется, необходимо знать условия эксплуатации и основные характеристики электродвигателя, для управления которым необходим ПЧ.

Современные серии преобразователей частоты включают до нескольких десятков моделей. Например, в линейке CONTROL-L620 IEK®, выведенной на рынок нашей компанией в 2017 году, представлено оборудование от 0,75 до 560 киловатт. В семействе CONTROL-А310 IEK® диапазон мощностей — до 22 киловатт, при этом уже с 11 киловатт есть возможность изготовить преобразователь со встроенным дросселем постоянного тока, что продлевает срок службы преобразователя. Номинальные напряжения — 220 и 380 В.

Такой бренд, как ONI®, предлагает сразу четыре марки частотных преобразователей: ONI-А400, ONI-М680, ONI-A650 и ONI-К800 — в диапазоне мощностей от 0,4 до 132 кВт.


— Мощность, номинальный ток, напряжение питающей сети: как сориентироваться в этих параметрах?

Петр Ивлев: «Указанные критерии очень важны для оптимальной работы оборудования».
  • Мощность ПЧ должна быть равна мощности двигателя либо превышать ее. В случаях «тяжелого» применения, с высокими пусковыми нагрузками, допускается, чтобы мощность преобразователя была выше на одну, реже — на две ступени. Современные преобразователи частоты имеют большой диапазон мощности. Опять же обратимся к конкретным примерам оборудования: в линейке серии CONTROL-A310 представлены модели с мощностью от 0,4 до 22 кВт в режиме HD и от 0,75 до 22 кВт в режиме ND. Преобразователи частоты CONTROL-L620 поддерживают мощность в режиме HD от 0,75 до 500 кВт, в режиме ND — от 1,5 до 560 кВт. Есть и более узкий разбег: например, ПЧ линейки ONI-А400 работают в пределах мощности от 0,2 до 3,7 кВт.
  • Следующий критерий — номинальный ток. Электропривод не работает в идеальном режиме — всегда есть вероятность изменений динамических нагрузок на валу или превышения значений номинального тока. Поэтому наряду с мощностью при выборе ПЧ обращают внимание на номинальный ток электродвигателя и преобразователя частоты. Рабочее значение данного параметра у ПЧ берется либо с запасом относительно номинального тока двигателя, либо номинал в номинал. Это делается для того, чтобы обезопасить электропривод от возможных перегрузок.
  • Если говорить о напряжении питающей сети, то самыми распространенными моделями, которые используются на производстве, в ЖКХ и прочих сферах народного хозяйства, являются преобразователи напряжения 220 и 380 В. Напомню: значение данного параметра питающей сети и электродвигателя должно быть одинаковым.

— Какой преобразователь частоты лучше — однофазный или трехфазный?

Артем Мошечков: «В интернете можно прочитать, что однофазный преобразователь частоты обладает менее широким спектром возможностей, но это не так. Он способен решать все поставленные задачи».

На вход инвертора такого ПЧ подается однофазное напряжение соответствующей сети, которое на выходе формируется в трехфазное с частотой от 0 до 400 и выше Гц. Таким образом, при помощи однофазного ПЧ можно подключить обычный асинхронный трехфазный двигатель к однофазной сети. Для этого требуется подключить двигатель к преобразователю, правильно скоммутировав обмотки двигателя (на напряжение 220 В). Такие преобразователи частоты есть в семействе ONI — это серия А400, которая предназначена для управления асинхронными двигателями в системах небольшой мощности, но с большими перегрузками.

Трехфазные преобразователи частоты более распространены. Они преобразуют напряжение трехфазной промышленной сети и регулируют большое количество параметров электродвигателя. Примеры оборудования:

  • CONTROL-A310 IEK®,
  • CONTROL-L620 IEK®,
  • ONI-А400,
  • ONI-М680,
  • ONI-A650,
  • ONI-К800.

Часть 2. Нюансы

— Как правильно подобрать диапазон регулирования частоты и какой способ управления выбрать?

Петр Ивлев: «Использование ПЧ позволяет регулировать скорость электродвигателя от нуля до номинального значения и выше. При этом важно помнить, что преобразователь может обеспечить на выходе напряжение, равное напряжению питающей сети. Образно говоря, если двигателю нужно 690 В, а ПЧ рассчитан на 380 В — это в корне неправильный подбор оборудования».

О способах управления

В интернете много теоретической информации о том, какой вариант лучше. На самом деле основывать свой выбор надо не на оценках метода управления, а на области применения преобразователя частоты. В оборудовании, которое работает с кранами, подъемными механизмами или протяжными станками используется векторный способ. В насосах и вентиляторах, то есть в тех механизмах, где скорость практически не меняется, обычно используется скалярный. Оба этих метода решают одну задачу: регулировки скорости и изменения момента.

— Что такое ПИД-регулятор, управляющие входы/выходы, и насколько это важно?

Петр Ивлев: «Пропорционально-интегрально-дифференцирующий регулятор (ПИД-регулятор) управляет внешними процессами, анализируя сигналы обратной связи, поступающие на преобразователь частоты. Этот регулятор есть в 95 % современных преобразователей частоты».

Самый простой пример его использования: требуется поддерживать постоянное давление в трубе 5 Бар. ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим работы ПЧ.

ПЧ считывает сигналы с датчиков, а ПИД-регулятор за счёт математических алгоритмов обеспечивает необходимый режим его работы

Что касается входов и выходов

Сегодня большинство преобразователей частоты имеют в базовой комплектации аналоговые и цифровые входы/выходы, последовательный интерфейс и т.д. Такой набор функций позволяет интегрировать ПЧ в большинство автоматических систем, без ограничений в выборе способов управления преобразователем.

  • Дискретное (цифровое) управление считается самым простым, данные входы используются для передачи основных команд: пуск или остановка электропривода, регулирование скорости, переключение между режимами работы ПЧ. Такие выходы сообщают о неисправностях, достижениях заданных пределов по частоте и току, дают команды на включение ведомых электроприводов и т.д. На один дискретный вход можно задать необходимую функцию, выбрав из более чем нескольких десятков.
  • Аналоговое управление решает другие задачи. Например, обеспечивает плавное регулирование. Также данный способ управления позволяет проводить постоянный мониторинг и контролировать состояние необходимых параметров системы. Сигналы поступают на вход ПЧ с соответствующих датчиков.
  • Управление по последовательному интерфейсу используется для построения сложной автоматизированной системы. Данный способ позволяет управлять сразу несколькими преобразователями частоты, причем они могут находиться далеко друг от друга. Такой способ значительно сокращает число проводов, одновременно увеличивая возможности передачи информации. Наиболее универсальным и, соответственно, популярным и надежным интерфейсом (протоколом) для подключения к ПЧ на сегодняшний день считается Modbus (RS485).

— На что еще стоит обратить внимание, выбирая преобразователь частоты?

Артем Мошечков: «Разумеется, на функциональность, эргономичность оборудования, наличие дополнительных возможностей, понятный интерфейс. Важный для многих вопрос — условия работы и монтажа ПЧ. Например, преобразователи частоты серии CONTROL-А310 и L620 IEK® требуют достаточного свободного пространства для охлаждения, а ONI-А400 можно монтировать по принципу «стенка к стенке». Но все эти серии отличаются малыми габаритами и неприхотливостью в монтаже».

В некоторых линейках есть возможность использования стандартной витой пары UTP кат. 5e для выносного монтажа идущей в комплекте панели управления, что позволяет максимально упростить и до 10 раз удешевить монтаж панели управления по сравнению с преобразователями, использующими специальные коммутационные шлейфы.

Обращайте внимание на условия эксплуатации: например, если необходимо, чтобы преобразователь частоты безотказно работал при высокой влажности, стоит рассмотреть серию CONTROL-L620 IEK® — данное оборудование без дополнительного охлаждения можно эксплуатировать при относительной влажности до 95 % и температуре от -10 до +40 °C. А специальное покрытие плат, в соответствии с промышленными стандартами, позволяет применять эти преобразователи в тяжелых условиях.

Обязательно поинтересуйтесь, какие силовые ключи используются при сборе ПЧ — одними из самых надежных являются IGBT производства компании Infineon. Они позволяют существенно повысить надёжность и отказоустойчивость оборудования.

Система управления частотным преобразователем должна быть интуитивно понятной, функциональной, вариативной. В передовых моделях, например, таких как серия ONI-M680, источником управляющего сигнала может быть кнопочная панель, промышленная сеть, цифровые входы и импульсный вход. Имеется возможность подключения исполнительных устройств, датчиков, программируемых логических контроллеров. Некоторые входы и выходы способны функционировать в различных режимах.

И, разумеется, важны сертификация, гарантия производителя. Если говорить о тех сериях, на основе которых мы разбирали принципы работы ПЧ, то у линейки CONTROL IEK® расчетный срок службы составляет 7 лет, гарантия — два года. Все преобразователи, выпускающиеся под этой маркой, имеют сертификаты соответствия ГОСТ. Аналогичные показатели у частотных преобразователей семейства ONI®.

Часть 3. Особенности применения ПЧ для различного оборудования

— Преобразователь частоты для насосного оборудования: что он дает?

Артем Мошечков: «В случае с насосным оборудованием чаще всего требуется защитить трубопровод от гидроударов во время запуска насоса, а сам электропривод — от преждевременного выхода из строя и работы в аварийном режиме. Немаловажное значение имеет оптимизация расхода электроэнергии и поддержание постоянного давления в системе водоснабжения».

Для решения этих задач требуется обеспечить плавный пуск насосов и плавное же изменение частоты вращения электродвигателя. Причем диапазон значений должен быть достаточно широк: во время пиковой нагрузки электропривод работает на номинальных оборотах, обеспечивая необходимый расход воды. При малом разборе поддерживается в рабочем состоянии, потребляя тот минимум электроэнергии, который необходим в данный момент. Также в сфере ЖКХ с помощью ПЧ возможно создание автоматизированной каскадной системы насосов, когда, в зависимости от разбора воды в жилых домах, работает один насос или, например, три. С помощью специальных функций преобразователь частоты позволяет экономить электроэнергию — это происходит за счет автоматической остановки работающего насоса при отсутствии расхода воды в системе.

С этой задачей справятся ПЧ следующих серий: CONTROL-A310 IEK®, CONTROL-L620 IEK®, ONI-А400, ONI-M680. Однако наиболее удачным выбором станет преобразователь частоты ONI-A650, разработанный специально для применения в системах вентиляции и насосных установках. Уже в базовой конфигурации он содержит специальную плату каскадного управления насосами, что позволяет объединить до 5 насосов в единый каскад.

Мнение: Преобразователь частоты ONI-К800 был применен в приводе насоса системы водоснабжения и в приводе конвейера. Зарекомендовал себя с положительной стороны. При настройке и в ходе эксплуатации легко монтировались силовые и контрольные кабели, преобразователь просто настраивался с лицевой панели. Обладает большим функционалом защит, большим количеством входов-выходов.
Начальник отдела ЭМП АО «Уралгипромез» Д.Н. Томашевский.

— Какие преобразователи частоты подойдут для грузоподъемных механизмов (крановое оборудование, лебёдки)?

Петр Ивлев: «Современный крановый механизм — очень сложная система. Поэтому преобразователь частоты для электропривода такого механизма должен соответствовать высоким требованиям: обладать высокой перегрузочной способностью (до 200 %), уметь управлять механическим тормозом электродвигателя, иметь возможность подключения тормозного резистора (встроенный тормозной модуль) и организации обратной связи для регуляции скорости вращения электродвигателя. Последняя необходима для обеспечения быстрого обмена информацией между звеньями системы, непрерывного мониторинга всех процессов и точного управления параметрами во время работы сложнейшего кранового механизма».

Преобразователи частоты для электродвигателей грузоподъемных механизмов позволяют организовать надежное управление электроприводом при подъеме и опускании груза, поворотах стрелки, обеспечивая вертикальное и горизонтальное перемещение без раскачивания, с различными скоростями, таким образом гарантируя максимальную производительность.

В зависимости от модели крана, это могут быть следующие виды частотных преобразователей:

  • для обеспечения плавного перемещения крана можно порекомендовать серии CONTROL-L620 IEK®, ONI-M680 и ONI-K800;
  • для надежной работы лебёдки подъёма, в зависимости от задачи, подойдут М680 и К800.

— Как преобразователь частоты работает в случае с транспортерным и конвейерным оборудованием?

Артем Мошечков: «При запуске таких механизмов возникает пусковой ток, превышающий номинальный в 6-7 раз, а также — большая нагрузка на детали механизма и, как следствие, повышенный износ узлов или перегрев электродвигателя. Это самая частая причина отказов подобного оборудования. Далее, в процессе работы привод обычно вращается с одинаковой скоростью. Поэтому для механизмов непрерывного транспорта очень важны плавный разгон и торможение без рывков, пробуксовок, остановок, а также постоянная заданная скорость движения. Следовательно, преобразователь частоты для такого оборудования решает задачи по обеспечению постоянной скорости транспортера или конвейера, повышению уровня надежности (так как значительно снижает количество отказов как механического, так и электрического происхождения), устранению перегрузок во время запуска».

Использование преобразователей частоты с электродвигателями конвейеров и транспортеров позволяет не просто автоматизировать запуск, регулирование скорости и остановки ленты, но и создавать более сложные алгоритмы работы оборудования (зависит от выбранной модели ПЧ и подключенных датчиков).

Мнение: Преобразователь частоты CONTROL-L620 IEK® номинальной мощностью 5.5 был установлен на подающем конвейере в установке № 2 для сушки травяной муки. Режим работы преобразователя — круглосуточный «старт-стоп». Оборудование зарекомендовало себя с положительной стороны. Во время тестирования все функции работали в заявленном штатном режиме, замечаний во время эксплуатации выявлено не было.
Заместитель генерального директора по IT ПАО «Птицефабрика Боровская» С.М. Солкин.

— Есть ли смысл использовать преобразователи частоты для вентиляторного оборудования?

Петр Ивлев: «Есть. ПЧ для вентиляторного оборудования регулирует скорость вращения вала электропривода, позволяя экономить на электричестве. В случае установки дополнительного датчика, который передает оперативные данные о текущей потребности в воздухе на преобразователь, последний изменяет скорость вращения электродвигателя. Это позволяет экономить электроэнергию на 20-40 %. Кроме того, ПЧ надежно защищает электропривод вентилятора от бросков тока и перегрузок за счет плавного пуска и такой же плавной остановки вала».

Можно порекомендовать к установке на вентиляторное оборудование преобразователи частоты следующих серий: ONI-A650, CONTROL-A310 IEK®, CONTROL-L620 IEK®, ONI-A400.

— «Тяжелый» или «нормальный» режим работы преобразователя частоты — какой выбрать?

Артем Мошечков: «Современные ПЧ обеспечивают пуск и работу двигателей в нормальном или тяжелом режиме. Для их обозначения используются аббревиатуры ND — нормальный и HD — тяжелый».

В режиме ND величина вращающего момента постоянна, независимо от скорости вращения двигателя. В частности, таким образом работают насосы.

Тяжелый режим (НD) характеризуется нагрузкой с переменным вращающим моментом — как в случае с экструдерами, конвейерами или компрессорами. При этом существуют частотные преобразователи, которые поддерживают сразу два указанных режима, что позволяет экономить бюджет при проектировании различных систем. Например, преобразователи частоты IEK® серий CONTROL-A310 и L-620 могут работать как в ND-режиме, так и в режиме HD. Также оба режима поддерживают ПЧ ONI-М680.

www.elec.ru

Преобразователь частоты. Выбор и расчет преобразователя частоты для электродвигателя.

Выбор преобразователя частоты

При определении характеристик преобразователя частоты для заданной нагрузки первым шагом является рассмотрение нагрузочных характеристик. Существуют четыре различных способа расчета требуемых выходных параметров, при этом выбор способа зависит от характеристик электродвигателя.

Нагрузочные характеристики

Прежде чем определить типоразмер преобразователя частоты, необходимо провести различие между двумя наиболее широко используемыми нагрузочными характеристиками. Нагрузочные характеристики различаются между собой следующим образом:


Рис. 1. Постоянный и квадратичный нагрузочный момент

• Когда скорость центробежных насосов и вентиляторов увеличивается, потребляемая мощность возрастает в третьей степени (Р = n3).

• Обычный рабочий диапазон центробежных насосов и вентиляторов лежит в пределах скоростей от 50 до 90 %. Коэффициент нагрузки возрастает пропорционально квадрату скорости, т. е. приблизительно от 30 до 80 %.

Оба эти фактора проявляются в характеристиках крутящего момента электродвигателя, управляемого преобразователем частоты.

На рис 2 и 3 показаны характеристики крутящего момента для двух типоразмеров преобразователей частоты, один из них (рис. 3) имеет меньший диапазон мощности, чем другой. Для обеих характеристик крутящего момента были заданы одинаковые нагрузочные характеристики центробежного насоса.

На рис. 2 весь рабочий диапазон насоса (0-100 %) находится в пределах номинальных значений параметров двигателя. Поскольку обычный рабочий диапазон насоса находится в пределах 30-80 %, можно выбрать преобразователь частоты с меньшей выходной мощностью.


Рис. 2. Преобразователь частоты большой мощности

Рис. 3. Преобразователь частоты малой мощности

Если нагрузочный момент постоянен, электродвигатель должен быть способен развивать крутящий момент, превышающий нагрузочный момент, поскольку избыточный крутящий момент используется для разгона.

Для разгона и обеспечения высокого начального момента, например в случае привода ленточных транспортеров, достаточен кратковременный перегрузочный момент, составляющий 60 % от момента, развиваемого преобразователем частоты. Перегрузочный крутящий момент также обеспечивает системе способность преодолевать внезапные увеличения нагрузки. Преобразователь частоты, который не допускает никакого перегрузочного момента, должен выбираться таким образом, чтобы ускоряющий крутящий момент (TB) находился в пределах номинального крутящего момента.


Рис. 4. Перегрузочный крутящий момент используется для разгона

При определении нагрузочных характеристик рассматриваются четыре разных набора технических характеристик электродвигателя, позволяющие принять решения относительно выбора типоразмера преобразователя частоты по мощности.

1. Преобразователь частоты можно выбрать быстро и точно на основе значения тока lM, который потребляет электродвигатель. Если электродвигатель загружается не полностью, его ток может быть измерен при работе аналогичной системы с полной нагрузкой.


Рис. 5. Выбор преобразователя частоты на основе номинального тока

Пример расчета и выбора преобразователя частоты:

Электродвигатель 7,5 kW, 3 х 400 В потребляет ток 14,73 А.

Что касается технических данных преобразователя частоты, то выбирается такой преобразователь, у которого длительный максимальный выходной ток больше или равен 14,73 А при постоянной или квадратичной характеристике крутящего момента.

Примечание:

Если преобразователь частоты выбирается на основе мощности (способы 2-4), необходимо сравнить расчетную мощность и мощность, указанную в технических данных преобразователя частоты, при одном и том же напряжении. Если преобразователь частоты рассчитывается на основе тока (способ 1), этого не требуется, поскольку выходной ток преобразователя частоты влияет на другие данные.

2. Преобразователь частоты можно выбирать на основе полной мощности SM, потребляемой электродвигателем и полной мощности, подаваемой преобразователем частоты.


Рис. 6. Выбор преобразователя частоты на основе полной мощности

Пример расчета и выбора преобразователя частоты:

Электродвигатель 7,5 kW, 3x400 В потребляет ток 14,73 А. Sm =U х I х √3 / 1000 = 400 х 14.73 √3 / 1000= 10,2 кВА

Что касается технических данных преобразователя частоты, то выбирается такой преобразователь частоты, у которого длительная максимальная выходная мощность больше или равна 10,2 кВА при постоянной или квадратичной характеристике крутящего момента.

3. Преобразователь частоты можно также выбирать по мощности Рм, вырабатываемой электродвигателем. Однако данный способ является неточным, поскольку cos φ и коэффициент полезного действия η изменяются с нагрузкой.


Рис. 7. Выбор преобразователя частоты на основе стандартной серии электродвигателей

Пример расчета мощности электродвигателя

Электродвигатель мощностью 3 кВт, имеющий cos φ = 0,80 и η = 0,81, потребляет мощность SM= PM/(η х cos φ) = 3,0 / (0,80 х 0,81 )=4,6 кВА

Что касается технических данных преобразователя частоты, то выбирается такой преобразователь, у которого длительная максимальная выходная мощность больше или равна 4,6 кВА при постоянной или квадратичной характеристике крутящего момента.

4. На практике номинальная мощность большинства преобразователей частоты соответствует стандартной серии асинхронных электродвигателей. Поэтому преобразователи частоты часто выбирают исходя именно из этого соображения, что, однако, может привести к неточному определению их характеристик, особенно если электродвигатель не нагружается полностью.


Рис. 8. Выбор преобразователя частоты по выходной мощности на валу

Распределение тока в преобразователе частоты (cos φ (фи) электродвигателя)

Ток для намагничивания электродвигателя подается конденсатором, находящимся в промежуточной цепи преобразователя частоты. Ток намагничивания представляет собой реактивный ток, который протекает между конденсатором и электродвигателем (рис. 9).


Рис. 9. Токи в преобразователе частоты

Из сети поступает только активный ток (lW). Именно поэтому выходной ток преобразователя частоты всегда больше входного тока. Кроме активного тока из сети потребляется ток Iloss, (ток потерь).

Пример расчета

При отсутствии нагрузки ток 4-полюсного электродвигателя мощностью 1,1 кВт равен 1,6 А. Выходной ток подключенного преобразователя частоты составляет около 1,6 А, а входной ток при работе без нагрузки почти равен нулю.

Изготовители электродвигателей обычно указывают cos φ электродвигателя при номинальном токе. При меньшем значении cos φ (например, в случае реактивного синхронного электродвигателя) номинальный ток электродвигателя при одинаковых значениях мощности и напряжения будет больше, как видно из следующего уравнения:

IS = IW/ cos φ

Если преобразователь частоты выбирается по номинальному току электродвигателя (способ 1), то снижения номинального крутящего момента электродвигателя не происходит.

Конденсатор, подключенный к клеммам электродвигателя для компенсации реактивного тока, необходимо удалить. Ввиду высокой частоты коммутации преобразователя частоты конденсатор ведет себя как короткозамкнутая цепь и вызывает существенное увеличение тока электродвигателя. Преобразователь воспримет это как замыкание на землю или короткое замыкание и отключится.

Управление скоростью электродвигателя

Выходная частота преобразователя частоты и, следовательно, скорость электродвигателя управляются одним или несколькими сигналами (0-10 В, 4-20 мА или импульсами напряжения). Когда подается сигнал на увеличение скорости, скорость электродвигателя возрастает, и вертикальная часть характеристик крутящего момента электродвигателя сдвигается вправо (рис. 10).


Рис. 10. Зависимость между управляющим сигналом и характеристиками крутящего момента электродвигателя

Если нагрузочный момент меньше, чем номинальный крутящий момент электродвигателя, скорость достигнет требуемого значения. Как показано на рис. 11, нагрузочные характеристики пересекаются с характеристиками крутящего момента электродвигателя в вертикальной части (в точке А). Если пересечение происходит в горизонтальной части (точка В), скорость электродвигателя не может длительное время превышать соответствующее значение, Преобразователь частоты допускает превышение предельного тока короткого замыкания без отключения (точка С), но продолжительность превышения обязательно должна быть ограничена по времени.


Рис. 11. Ток электродвигателя может в течение короткого времени превышать предел по току

Рампы разгона и торможения

Характеристика (рампа) разгона показывает темп, с которым происходит увеличение скорости вращения, и задается в виде времени разгона tacc. Эти рампы базируются, главным образом, на номинальной частоте электродвигателя, например, рампа разгона 5 с означает, что преобразователю частоты потребуется 5 секунд для перехода от нулевой до номинальной частоты электродвигателя (f = 50 Гц).


Рис. 12. Время разгона и торможения

Рампа торможения показывает, насколько быстро снижается скорость. Она задается в виде времени торможения tdec.

Возможен непосредственный переход от разгона к торможению, поскольку электродвигатель всегда отслеживает выходную частоту инвертора.

Если известен момент инерции вала электродвигателя, можно вычислить оптимальные значения времени разгона и торможения.

tacc= J x (n2-n1)/[(Tacc – Tfric) x 9,55]

tdec = J x (n2-n1)/[(Tacc + Tfric) x 9,55]

J - момент инерции вала электродвигателя.

Tfric – момент трения системы.

Тасс - избыточный (перегрузочный) момент, используемый для разгона.

Tdec - тормозящий момент (момент торможения), который возникает при уменьшении задания скорости.

n1 и n2- скорости вращения на частотах f1 и f2.

Если преобразователь частоты допускает кратковременный перегрузочный момент, то моменты разгона и торможения устанавливаются равными номинальному крутящему моменту электродвигателя Т. На практике время разгона и время торможения обычно одинаковы.

Пример расчета

J = 0,042 кгм2, Tfric = 0,05 x MN , n1 = 500 об/мин, n2 = 1000 об/мин, ТN = 27 Нм

tacc = J х (n2 – n1)/ [(Тасс - Tfric) х 9,55] = 0,042 х (1000 - 500)/ [(27,0 - (0,05 х 27,0)) х 9,55] = 0,1 [с]

Динамическое торможение

Когда сигнал задания скорости снижается, электродвигатель ведет себя как генератор и тормозит. Замедление при торможении зависит от величины нагрузки электродвигателя.

Электродвигатели, подключенные непосредственно к сети, отдают мощность торможения обратно в сеть.

Если электродвигатель работает от преобразователя частоты, энергия торможения сохраняется в промежуточной цепи преобразователя частоты. Если мощность, выделяемая при торможении, велика и преобразователь частоты не может рассеять ее за счет собственной конструкции, напряжение промежуточной цепи возрастает.

Напряжение промежуточной цепи может расти до тех пор, пока преобразователь частоты не будет отключен средствами защиты, и иногда к промежуточной цепи приходится подключать нагрузку в виде тормозного модуля и внешнего резистора для поглощения мощности торможения.?

Использование тормозного модуля и тормозного резистора позволяет осуществлять быстрое торможение при больших нагрузках. Однако, при этом возникают проблемы, связанные с нагревом. Другим решением является использование блока рекуперативного торможения. Такие блоки применяются для преобразователей частоты с неуправляемым выпрямителем и возвращают энергию торможения в питающую сеть.

В преобразователях частоты с управляемыми выпрямителями мощность торможения может возвращаться в сеть (см. рис. 13) с помощью, например, инвертора, подключенного к выпрямителю встречно-параллельно.


Рис. 13. Включение тормозного модуля и тормозного резистора


Рис. 14. Инвертор, включенный встречно-параллельно

Другой способ торможения электродвигателя - торможение постоянным током. Для создания магнитного поля в статоре используется напряжение постоянного тока, подаваемое между двумя фазами электродвигателя. Поскольку энергия торможения остается в электродвигателе и возможен перегрев, торможение постоянным током рекомендуется использовать в диапазоне низких скоростей, чтобы не превышать номинальный ток электродвигателя. Обычно торможение постоянным током ограничивается во времени.?

Реверс

Направление вращения асинхронных электродвигателей определяется порядком следования фаз питающего напряжения.

Если поменять местами две фазы, направление вращения электродвигателя изменится, и он будет вращаться в противоположном направлении.

Большинство электродвигателей сконструировано таким образом, чтобы заставить вал двигателя вращаться по часовой стрелке, если соединение выполнено следующим образом:


Рис. 15. Направление вращения электродвигателя изменяется путем изменения порядка следования фаз

Этому же правилу отвечает и порядок следования фаз на выходных клеммах большинства преобразователей частоты.

Преобразователь частоты может осуществлять реверс электродвигателя путем изменения порядка следования фаз с помощью электроники. Реверс производится либо путем задания отрицательной скорости, либо цифровым входным сигналом. Если при первоначальном вводе в эксплуатацию требуется, чтобы электродвигатель имел определенное направление вращения, необходимо знать заводскую настройку преобразователя частоты по умолчанию.

Поскольку преобразователь частоты ограничивает ток электродвигателя номинальным значением, двигатель, управляемый преобразователем частоты, можно реверсировать чаще, чем двигатель, подключенный непосредственно к сети.


Рис. 16. Тормозной момент преобразователя частоты во время реверса

Рампы

Все преобразователи частоты имеют функции изменения скорости (рампы) для обеспечения плавной работы. Эти рампы можно изменять, и благодаря им задание скорости можно увеличивать или уменьшать в определенном интервале.


Рис. 17. Регулируемое время разгона и торможения

Угол наклона характеристики разгона/торможения (длительность разгона/торможения) можно установить таким малым, что в некоторых ситуациях электродвигатель не сможет отработать задание (не сможет разогнать/затормозить двигатель за заданное время).

Это приводит к увеличению тока электродвигателя до тех пор, пока не будет достигнут предел по току. В случае малого времени замедления (t) напряжение промежуточной цепи способно возрасти до такого уровня, что схема защиты преобразователя частоты остановит преобразователь.

Оптимальное время изменения скорости можно вычислить по приведенным ниже формулам.

ta = J x n/[(TN-Tfric)x9,55]

t-a = J x n/[(TN+Tfric)x9,55]

ta - время увеличения скорости

t-a- время уменьшения скорости

n - число оборотов

TN - номинальный крутящий момент электродвигателя

Tfric - момент трения


Рис. 18. Установка времени изменения скорости

Время разгона/торможения обычно выбирается исходя из номинальной скорости электродвигателя.

Текущий контроль

Преобразователи частоты могут контролировать регулируемый процесс и вмешиваться в него при неисправности.

Такой контроль может быть разделен на три вида в зависимости от объекта: контроль технологической установки, контроль электродвигателя и контроль преобразователя частоты.

Контроль установки основан на контроле выходной частоты, выходного тока и крутящего момента электродвигателя. На основании этих параметров можно устанавливать несколько пределов, превышение которых воздействует на функцию управления. Этими пределами могут быть допустимая наименьшая скорость электродвигателя (минимальная частота), допустимый наибольший ток (предел по току) или допустимый наибольший крутящий момент электродвигателя (предельный крутящий момент).

Преобразователь частоты может быть запрограммирован, например, на подачу предупреждающего сигнала, уменьшение скорости электродвигателя или останов последнего в случае выхода его скорости за установленные пределы.

Пример

В установках, использующих для соединения электродвигателя с остальной частью системы клиновой ремень, преобразователь частоты может программироваться на контроль состояния этого ремня.

Поскольку в случае разрыва ремня выходная частота будет увеличиваться быстрее, чем определяется заданной рампой, в таких ситуациях можно использовать эту частоту для подачи предупреждения или останова электродвигателя.

Контроль электродвигателя можно производить с помощью преобразователя частоты путем мониторинга тепловой модели электродвигателя или путем подключения к электродвигателю термистора. Преобразователь частоты может предотвращать перегрузку электродвигателя, действуя подобно термореле. В вычислениях, производимых преобразователем частоты, участвует и выходная частота. Это гарантирует, что электродвигатель не будет перегружаться на малых скоростях из-за ухудшения внутренней вентиляции. Современные преобразователи частоты также способны защищать электродвигатели с принудительной вентиляцией, если ток становится слишком большим.

Контроль преобразователя частоты традиционно производится таким образом, что в случае перегрузки по току преобразователь отключается. Некоторые преобразователи допускают кратковременную перегрузку по току. Микропроцессор в преобразователе частоты способен одновременно учитывать значение тока электродвигателя и время его приложения, что обеспечивает возможность оптимального использования преобразователя частоты без перегрузки.

По материалам Danfoss

eti.su

Как правильно выбрать частотник для электродвигателя / Статьи и обзоры / Элек.ру

Сегодня купить преобразователь частоты достаточно просто. Зачастую, мы это делаем с помощью поисковых систем или звоним уже проверенным поставщикам. При этом нужно помнить, что правильный выбор оборудования — одна из самых важных задач для любого хозяйственного объекта! Учитывая все важные критерии и характеристики, вы приобретаете привод, будет работать с максимальной эффективностью.

  1. Мощность преобразователя частоты. Выбор необходимо делать с учетом номинального значения приводного электродвигателя с учетом перегрузочной способности. Для этого, необходимо знать тип перегрузок управляемого механизма: величину перегрузок, их длительность и частоту возникновения.
  2. Напряжение сети. Наиболее часто мы используем низковольтную трехфазную питающую сеть 380 В. Но бывают случаи, когда электротехническое оборудование используют на 660, 690 В, 3 кВ, 6 кВ и 10 кВ.
  3. Регулирование частоты. Может быть установлен практически любой частотник, в случаях, если скорость снижается до 50 % от номинальной. Но если, необходимо обеспечить надежный рабочий процесс при близких к нулю частотах, тогда нужен специальный электродвигатель с возможностью работы при таких параметрах. Здесь, также важно отметить, способ охлаждения двигателя. В этих случаях важна защита электродвигателя по температуре.
  4. Способ управления двигателем. Управление рабочим процессом возможно как через местный пульт, так и дистанционный. Также, здесь должны учитываться передача данных по различным протоколам, которые позволят внедрить систему АСУ.
  5. Функциональные возможности. Частотный преобразователь должен иметь тот набор функций, который необходим для сочетания оптимальной цены и выполнения поставленных задач. Здесь важна ориентация для работы частотника: управление стандартными узлами (насосами, вентиляторами) или специальными (краны, рольганы, многодвигательные системы).
  6. Конструктивное исполнение. Исполнение частотного преобразователя должно соответствовать эксплуатируемым условиям. В этих случаях возможны исполнения для работы в агрессивных средах, влажных, пыльных и др.

Выбирая частотный преобразователь для потребностей предприятия, вы можете знать точную модель нужного оборудования и без каких-либо сложностей заказать его через интернет. Но мы, как надежный производитель частотных преобразователей частоты, рекомендуем обращаться за подбором частотников к профессионалам. Широкий модельный ряд преобразователей частоты «Триол» позволяет подобрать модель необходимой мощности с широким набором функциональных возможностей. На складе компании есть приводы стандартной комплектации, а также изготавливается оборудование под ваши индивидуальные требования. Эксперты в области электротехнического оборудования от Корпорации «Триол» помогут подобрать, доставить, установить и в дальнейшем обслуживать частотные преобразователи.

Корпорация «Триол» — подбор оборудования на высшем уровне!

Корпорация «Триол»

www.elec.ru

Как подобрать частотный преобразователь

Использование частотных преобразователей для управления электродвигателями в различных системах – эффективное и современное решение, позволяющее получить стабильность работы и простой способ управления. Конечно, это возможно только в том случае, если подбор частотного преобразователя

Что нужно сделать вначале

Очевидно, что перед тем, как подобрать преобразователь частоты, у вас должна быть полностью разработана система, которой он будет управлять. То есть, перед выбором вы должны знать:

  • Какой двигатель будет установлен в системе;
  • Мощность двигателя;
  • Особенности пуска и торможения;
  • Характер нагрузки на двигатель;
  • Необходимость подключения дополнительных датчиков и цепей дистанционного управления.

По большому счету, когда известно назначение системы, например, управление лифтами, насосом или вентиляцией, можно значительно сузить круг выбора, рассматривая модели преобразователей, которые оптимизированы для работы с таким характером нагрузки. Однако даже в этом случае выбор будет достаточно велик.

 Критерии выбора частотника

 Чтобы подобрать оптимальный частотный преобразователь для решения определенной технической задачи, следует рассмотреть такие параметры:

  • Питающее входное напряжение и число фаз. Они должны соответствовать значениям, указанным в паспорте частотника.
  • Мощность двигателя и его номинальный ток. У частотника эти характеристики должны быть примерно на 10% выше. Больший запас по мощности делать не желательно, если не планируется модернизация. Во-первых, такой запас обойдется значительно дороже, во-вторых, может быть ухудшена точность управления двигателем.
  • Характер нагрузки. Если нагрузка предполагает постоянную работу двигателя на пиковых мощностях, например, подъемники, прессовое оборудование, следует обратить внимание на длительность пиковой нагрузки и ее допустимое значение.
  • Возможность поддерживать работу в требуемом диапазоне частот.
  • Желаемый принцип работы системы торможения двигателя. Например, в системах большой мощности с частыми циклами запуска-остановки имеет смысл рассмотреть покупку более дорого частотника с рекуперативным торможением. Первичные затраты на оборудование окупятся экономией электроэнергии.
  • Необходимость подключения дополнительных датчиков. Например, в насосных системах наличие обратной связи от датчика давления позволит увеличить точность и экономичность работы.
  • Поддержка протоколов и наличия портов удаленного управления и мониторинга. Соблюдение этих требований важно при централизованном или автоматизированном управлении.
  • Условия монтажа и эксплуатации должны быть учтены с учетом параметров окружающей среды помещения, в котором будет установлен частотный преобразователь.

Пользуясь этими правилами, которые рекомендуют, как правильно выбрать частотный преобразователь, вы сможете подобрать оптимальную модель преобразователя по критериям стоимости и функциональности. Также вы можете обратиться за помощью в выборе к специалистам нашей компании.


вернуться в блог

ies-drives.ru

Частотник для трехфазного электродвигателя-принцип работы

Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе — плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.

Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:

  • Инвертором;
  • Преобразователем частоты переменного тока;
  • Частотным преобразователем;
  • Частотно регулируемым приводом.

С помощью инвертора осуществляется регуляция вращательной скорости асинхронного электродвигателя, предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.

Специально разработанная схема частотного преобразователя позволяет доводить КПД двигателя до уровня в 98%.

Наиболее значимо использование преобразователя в конструкции электрического двигателя большой мощности. Частотник позволяет осуществлять изменения пусковых токов и задавать для них требуемую величину.

Принцип работы частотного преобразователя

Использование ручного управления пускового тока чревато излишними энергозатратами и уменьшением срока эксплуатации электрического двигателя. При отсутствии преобразователя также наблюдается превышение номинального значения напряжения в несколько раз. Из-за работы в таком режиме, также наблюдается негативное влияние.

Кроме того, частотный преобразователь обеспечивает плавность управления функционированием двигателя, ориентируясь на балансировку значений напряжения и частоты, и снижает энергопотребление вдвое.

Весь приведённый перечень положительных моментов возможен благодаря принципу двойного преобразования напряжения. Действует он следующим образом:

  1. Сетевое напряжение регулируется через выпрямление и фильтрование в звене прямого тока.
  2. Выполнение электронного управления, которое формирует определённую частоту, в соответствии с предварительно обозначенным режимом, и трёхфазное напряжение.
  3. Происходит продуцирование прямоугольных импульсов с последующей корректировкой амплитуды при помощи обмотки статора.

Как правильно подобрать преобразователь частот

Наиболее значимо при покупке частотника — не жалеть денег. В случае с преобразователем, дешёвый всегда означает малофункциональный, а это делает покупку бесполезной.

Также следует обратить внимание на тип управления преобразователя:

Высокоточная установка величины тока.

Рабочий режим ограничен заданным выходным соотношением частоты и напряжения. Данный тип управления уместен только для бытовых приборов простейшего типа.

Далее следует обратить внимание на мощность преобразователя частоты. Тут всё просто: чем больше, тем лучше.

Питающая сеть должна обеспечивать достаточно широкий диапазон напряжений. Это снижает риск поломки при резких скачках. Чрезмерно высокое напряжение может спровоцировать взрыв конденсаторов.

Показатели частоты должны удовлетворять производственным потребностям. Их нижний порог определяет широту возможностей для управления приводной скорости. Максимальный частотный диапазон возможен только при векторном управлении.

Число входящих/выходящих управляющих разъёмов должно быть немного больше минимально необходимого. Но это, конечно, отражается на повышении цены и возникновении затруднений при установке устройства.

Наконец, требуется обратить внимание на совпадение характеристик управляющей шины и параметров частотника. Это определяется по соответствию числа разъёмов.

Важно отметить способность переносить перегрузки. Запас мощности преобразователя частоты должен на 15% превосходить мощность двигателя.

Комплектация регулируемого привода

Частотный преобразователь формируется из трёх компонентов:

  1. Управляемый, либо неуправляемый выпрямитель, отвечающий за формирование напряжения ПТ (постоянного тока), поступающего от питания.
  2. Фильтр (в виде конденсатора), осуществляющий дополнительное сглаживание напряжения.
  3. Инвертор, моделирующий напряжение нужной частоты.

Самостоятельное подключение преобразователя

Перед тем, как приступать к подключению устройства следует воспользоваться обесточивающим автоматом, он обеспечит отключение всей системы в случае короткого замыкания на любой из фаз.

Существует две схемы соединения электродвигателя с частотным преобразователем:

  1. «Треугольник».

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

  1. «Звезда».

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Самодельный частотный преобразователь 220-380V собственной сборки


Watch this video on YouTube

chistotnik.ru


Смотрите также