Как выбрать турбину


Как выбрать турбину для авто — DRIVE2

Турбина способствует увеличению плотности воздуха, который поступает в двигатель автомобиля, обеспечивая тем самым возможность сжигания большего количества топлива. Чем больше сгорает топлива, тем больше возникает энергии от процесса сгорания, и соответственно создается больший момент.

о даааааа)))

Преимущество турбовых двигателей заключается в том, что имеется возможность значительно увеличить давление.
Турбина имеет в своем составе два основных элемента, которыми являются непосредственно сама турбина и компрессор. Выпускной газ воздействует на крыльчатку, а именно раскручивает ее, проходя через турбину. Вращение крыльчатки, которая представляет собой вентилятор в корпусе турбины, передается в другую часть устройства — компрессору. Компрессорный вентилятор нагнетает воздух в область двигателя.

Как уже можно было догадаться, чем большим будет давление, тем большее количество воздуха будет поступать в мотор. Однако бесконечное увеличение давления в двигателе, без возникновения проблем, просто невозможно. В том случае, если турбина работает в усиленном режиме, возникает лишнее тепло, обратное давление и пульсация, что может привести к появлению трещины на корпусе турбины, сокращению срока службы подшипников, протечке масла и даже повреждению двигателя. Поэтому давление должно увеличиваться, не злоупотребляя этим.

улитка

Замена турбины

Стандартный вариант замены турбины заключается в монтаже высокопоточного компрессора, а также в некоторых случаях и увеличенной крыльчатки турбины. Это позволяет достичь обратного эффекта, который заключается в том, что уровень воздействия выпускных газов на турбину будет снижен, что способствует в свою очередь снижению ее скорости и давления на начальном этапе раскручивания. Чаще всего, корпуса турбины и компрессора могут быть заменены на большие размеры, что открывает возможность для пропуска более значительного количества газа.

Однако следует не забывать, что для отдельной модели автомобиля, турбина была подобрана производителем. Это означает, что им было предусмотрено правильное соответствие диаметра выхода и входа, а именно их размеры. Но в последнее время большим спросом стали пользоваться «гибридные» турбины. Стоит понимать, что такой вид турбины неспособен обеспечить такую же мощность, как стандартная турбина.
В большей части турбин используются 180-градусные упорные подшипники, которые располагаются в корпусе. Такой подшипник отлично справляется со своими функциями при воздействии нормального давления, однако при повышении уровня давления быстро поддается изнашиванию. Данную проблему способен решить 360-градусный подшипник, который увеличивает надежность и срок эксплуатации самой турбины.

Возможная замена
Если владелец автомобиля располагает небольшим бюджетом, то для него оптимальным вариантом могут стать японские б/у запчасти, которые предлагаются в большом ассортименте и размерах. В этом случае ориентиром должен быть объем двигателя, по размерам которого и должна подбираться турбина.

Современные турбины
При изготовлении современных турбин, очень часто используют керамический материал, который обладает меньшей плотностью, в отличие от стали, что позволяет уменьшать инерцию и быстрее раскручивать турбину. Большая часть современных турбин изготавливаются из сплава, в основу которого входит никель. Турбины из керамики часто устанавливались на старые модели Ниссанов (запчасти для современных моделей Ниссанов, например, для Ниссан Кашкай смотрите здесь). А все потому, что именно этот производитель первым обнаружил тот факт, что керамика положительно воздействует на турбину. Однако данный материал, наиболее чувствителен к воздействиям неблагоприятных элементов, которые поступают из выпускного коллектора. Также такие турбины могут повреждаться от ударов, поэтому их лучше не ронять.

Шариковые подшипники
Цель использования шариков заключается в достижении уменьшения уровня трения, а значит увеличения силы выпуска. И опять же, первенцем в достижении таких показателей стал Ниссан.

Турбины Garrett шарикоподшипникового или роллерного типа отличаются шестью болтами на корпусе. Этот производитель является лидером шарикоподшипниковых турбин, и снабжает своей продукцией многие знаменитые фирмы.

Турбины с раздвоенным пульсом
Данный вид турбин имеет раздельные пути, которые ведут к турбине, что приводит к улучшению отдачи. Турбины с двойным выходом сегодня доступны от многих компаний, предлагающих тюнинговые услуги.

Перепускные клапана
Целью перепускного клапана является пуск некоторой части выпускного газа в турбинный обход, что способствует ограничению скорости вращения самой турбины, и, следовательно, давления на выпускном коллекторе. Перепускные клапаны бывают внутренними и внешними. На большей части турбин используют внутренние клапаны. Они обеспечивают ограниченный поток воздуха проходящего по турбине, что предотвращает повреждение двигателя.
Внешние клапаны устанавливаются в отдельности от турбины.

www.drive2.ru

Как правильно выбрать турбину для своего автомобиля

Как выбрать турбину для двигателя

Мощность любого автомобильного движка можно увеличить благодаря установке турбины. Только этот элемент, увеличивая плотность поступающего в цилиндры воздушного потока, обеспечивает сжигание большего объема топлива. Каждый водитель знает, что от количества сжигаемого топлива напрямую зависит величина передаваемого на коленвал момента вращения.

Преимущество работающих с турбинами моторов заключается в наличии возможности значительно увеличить уровень давления. Турбины работают по следующему принципу. Этот элемент в себя включает две составляющие: саму турбину и компрессор. Посредством проходящего сквозь выхлопного газа начинает вращаться крыльчатка, кручение которой передается на компрессор. Задачей же приведенного в действие расположенного на компрессоре вентилятора является нагнетание воздушных потоков в цилиндровые камеры мотора.

Каждый знает, что давление будет расти с увеличением поступающего в движок воздушных потоков. Отметим, что нельзя в движке бесконечно увеличивать давление, иначе, к примеру, при переводе турбонагнетателя в режим работы под высокой нагрузкой из-за возникновения проблем, связанных с обратным давлением, лишним теплом и пульсацией на корпусной поверхности турбин появляются трещинки, сократиться рабочий ресурс подшипников, возникнуть масляная протечка и повредиться сам мотор. По этой причине давление нужно увеличивать в пределах нормы.

Как заменяют турбонагнетатели

В стандартных условиях в процессе замены турбонагнетателя выполняют установку компрессора высокопоточного типа и иногда турбинной крыльчатки с большими параметрами. Делается это с целью достижения эффекта обратных процессов, заключающихся в снижении силы действия выхлопов на работу, что приводит к снижению быстроты их работы и давления вначале вращения. Для пропуска большего объема выхлопов для турбин и компрессоров предусмотрен корпус с большими параметрами.

В некоторых машинах ставится рекомендованный предприятием-изготовителем турбонагнетатель, в котором с правильными размерами выходного и входного проходов. Зачастую автомобилисты отдают предпочтение «гибридным», вырабатывающих мощность, отличную от обеспечиваемой стандартными типами мощности. Иногда выполняют замену износившегося из-за повышения давления 180-градусные подшипники упорного типа на более устойчивые 360-градусные аналоги.

Для экономных водителей отличным вариантом замены турбонегнетателей является использование японских б/у запчастей, размеры и большой ассортимент которых предлагаются на любом авторынке. При этом турбину подбирают по объему и размерам движка.

Особенности турбонегнетателей

Турбина для двигателя

Турбонаддув стандартного типа. Современные элементы зачастую производятся с использованием керамики, имеющей по сравнению со сталью меньшую плотность, что способствует уменьшению инерции и скорому раскручиванию детали. Производство некоторых современных турбин выполняется с использованием никелевого сплава. Выполненные из керамики турбонагнетатели улучшают возможности мотора (по сравнению с никелевыми аналогами), но использование этого чувствительного к действиям проходящих через выпусковый коллектор вредных веществ приводит к ее скорому повреждению. В турбинах снижение трения и приращение выпусковой силы достигается посредством шариковых подшипников. К примеру, роллерная или шарикоподшипникового типа Garrett, крепящаяся на шести болтах, устанавливается многими знаменитыми компаниями при изготовлении машин.

Турбонагнетатели с раздвоенным выходом. В этом виде улучшенная отдача достигается посредством предусмотренных разработчиками раздельных путей, проходящих к турбине. Этот вид турбонагнетателя устанавливается многими компаниями при оказании тюнинговых услуг.

Установка перепускных клапанов. Посредством этого элемента некоторый объем выхлопов пускается в обход. Это дает возможность ограничить быстроту оборачиваемости и давления на выпусковом коллекторе. Они устанавливают с целью обеспечения проходящего через турбину ограниченного воздушного потока во избежание повреждения мотора. Внутренние клапаны устанавливают вместе с турбиной, внешние – в отдельности от нее.

Выбор

Перед покупкой турбонагнетателя нужно определиться с тем, до какой мощности автомобилист хочет разогнать свою машину, сколько он готов за это заплатить, сможет ли система выдержать дополнительную нагрузку.

Турбонаддув Garrett

Будет ли машина участвовать в гонках, или использоваться для повседневных задач? В зависимости от этого выбирается размер интеркулера и турбины. Отметим, что производительная работа также зависит от выбора трансмиссии.

При выборе нужно также учитывать:

  1. Достигаемую при установке турбины мощность. Перед установкой следует реально оценить возможности машины. Сможет ли мотор и машина выдержать установленную нагрузку?
  2. Движок какого типа стоит в машине? Различия в температурном режиме эксплуатации мотора являются причиной использования разных турбин. В машинах с бензиновыми агрегатами используются турбины, при изготовлении которых применялся более жаропрочный материал (по сравнению с материалом двигателей дизельного типа).
  3. Какой объем мотора? Большую можно использовать в автомобилях с силовыми агрегатами, имеющими большой объем. В моторах с объемом большим 3 литров целесообразной является установка сдвоенной.

Заключение

Турбина Garrett

Следует помнить, что правильно выбранная турбина способна улучшить работу машины и мощность силового агрегата. В то же время ошибочно выбранный турбонагнетатель может привести к полному краху всех автомобильной системы. По этой причине заказ турбины лучше проводить в надежном и проверенном магазине, где детали продаются не первый год и работают специалисты с опытом.

Правильный подбор устройства способствует как открытию новых возможностей автомобиля, так и обеспечению качественной работы мотора и всей автомобильной системы в целом.

Видео

Поделитесь с друзьями!

autoiwc.ru

Выбор турбины и расчёт производительности.

Выбор турбины.

Размер колеса компрессии и выбор ротора турбины для проекта, значительно влияет на степень успеха, который будет иметь система. Это никоим образом не значит, что вал турбины и колесо компрессии только этого размера будут работать при заданных условиях. Компромиссы между задержкой, порогом наддува, тепловыделением, моментом на низких оборотах и мощностью — это переменные оптимизационной модели в процессе определения соответствия турбонагнетателя предъявляемым требованиям. Эти требования могут быть уточнены путем внесения в список обязательных рабочих характеристик для данного транспортного средства.

Классический турбонагнетатель.

Цели могут быть различны в случаях автомобилей для повседневного использования, автомобилей с рекордной максимальной скоростью, автомобилей для дрэг-рейсинга, уличных супер-каров, настоящих гоночных автомобилей, и даже для транспортных средств, называемых пикапами. Определяющими критериями будут параметры вроде желательного порога наддува, пика момента и расчетной мощности. Транспортные средства с высокой максимальной скоростью требуют больших турбин, уличные автомобили более требовательны к моменту на средних оборотах, а низкоскоростные утилитарные транспортные средства нуждаются в небольших турбинах. Как выбрать подходящий турбонагнетатель в каждом конкретном случае и какие нюансы наиболее важны, мы обсудим в этой статье.
Чтобы пояснить, насколько могут различаться турбонагнетатели различного назначения, сравним эти устройства на Nissan 300ZX и на Porsche 911. Эти два автомобиля имеют сходные размеры, вес и рабочий объем двигателя, и все же их турбины существенно различаются. По размеру турбонагнетателя Porsche достаточно легко заметить, что конструкторы Porsche точно знали, что они хотели. Они установили большой турбонагнетатель на 911 по трем основным причинам:

  • при работе на максимальной нагрузке большой компрессор меньше нагревает сжимаемый воздух
  • большая турбина создает меньшее противодавление в выпускном коллекторе, также сокращая тепловую нагрузку
  • разработчики хотели получить мощный автомобиль

Конструкторы Nissan, с другой стороны, имея намного более благоприятный с точки зрения тепловыделения двигатель с водяным охлаждением, были свободнее в выборе турбонагнетателя для почти немедленной реакции прямо с холостых оборотов. Этот небольшой турбонагнетатель дает быструю реакцию наддува в обмен на крайне высокое противодавление на выпуске и высокую температуру воздуха на впуске. Nissan, очевидно, не стремился получить серьезную мощность, поскольку они не посчитали необходимым установить какой-нибудь интеркулер для снижения этой высокой температуры. Их целью, кажется, был автомобиль, нацеленный на разгон от 0 до 60 км/ч. Конечно, они были нацелены на совершенно не такого покупателя, каким является клиент Porsche. Хотя Porsche был объявлен всеми его дорожными испытателями ярчайшим примером конструкции с высоко инерционным турбонагнетателем, этот путь был выбран из-за меньшего нагрева. Небольшие турбонагнетатели не могли быть использованы на 911 вследствие тепловых ограничений двигателя с воздушным охлаждением, и, конечно, из-за того, что целью была серьезная мощность. Porsche, тем не менее, вполне можно назвать примером замечательно выполненной работы. Nissan же выступает в качестве примера продажи большого количества автомобилей большому количеству людей.

Базовые руководящие принципы

Влияние размеров колеса компрессора и ротора турбины на характеристики системы, будет целиком следовать этим руководящим принципам:

Колесо компрессора

Колесо компрессора имеет определенную комбинацию расхода воздуха и давления наддува, при которой он является наиболее эффективным. Хитрость в выборе оптимального размера колеса компрессора состоит в том, чтобы расположить точку максимальной эффективности в наиболее используемом диапазоне оборотов двигателя. В процессе выявления наиболее полезного диапазона оборотов придется немного подумать. Не забывайте, что всегда, когда эффективность компрессора снижается, тепловыделение, производимое турбонагнетателем, увеличивается. Если был выбран такой размер турбонагнетателя, что максимальная эффективность приходится на первую треть диапазона оборотов двигателя, эффективность на максимальных оборотах и в близких к тому режимах будет настолько низкой, что температура воздуха на впуске будет просто обжигающей. В другом крайнем случае, если максимальная эффективность системы достигается ближе к предельным оборотам двигателя, температура на средних оборотах вполне способна выйти за разумные пределы. Нагнетатель такого размера был бы полезен только для двигателя, работающего на этих оборотах. Где-то в середине диапазона оборотов двигателя находится наилучшее место, чтобы расположить там точку максимальной эффективности компрессора.
Большие или малые размеры компрессора не оказывают критического влияния на инерционность турбонагнетателя или на порог наддува. Рабочее колесо компрессора — самая легкая вращающаяся часть турбонагнетателя, следовательно, его вклад в полную инерцию вращающегося ротора довольно низок. Порог наддува — главным образом функция скорости турбонагнетателя, которая управляется ротором турбины.

Когда точка максимальной эффективности находится на более высоких оборотах, это означает более низкую температуру воздуха в этом режиме. Более низкая температура даёт более плотный воздух, который облегчает пик момента на более высоких оборотах.

В конечном счете, реальная потребительская ценность выбранного оборудования будет зависеть не только от мощности, термодинамических коэффициентов или числа турбин. Скорее, это будет выражаться в том, каким образом Ваша машина ведет себя на дороге. Она в самом деле быстра, и ее скорость прекрасно Вами ощущается? Она действительно отзывчива на педаль и легко бежит? Она плавно и непринужденно разгоняется до максимальных оборотов? Она заставляет Вас улыбаться, когда никто вокруг не увидит вашей улыбки?
Начните с выбора нескольких кандидатов на роль Вашего турбокомпрессора, чьи степень повышения давления и расход воздуха, согласно их картам, находятся в требуемом диапазоне оборотов при значении эффективности не ниже 60 %. Когда Вы отсеете заведомо непригодные устройства и остановитесь на двух-трёх вариантах, необходимо будет произвести некоторые расчеты, чтобы выбрать между ними.

Ротор Турбины.

Задача ротора турбины — осуществлять привод колеса компрессора, при этом он должен раскручивать его до достаточных оборотов, чтобы он мог обеспечить требуемый расход воздуха при заданном давлении наддува. Небольшая турбина будет вращаться быстрее, чем большая при той же энергии выхлопных газов. Однако меньшая турбина является большим сужением на пути потока этих газов, что приводит к образованию обратного давления между турбиной и камерой сгорания. Обратное давление — нежелательный побочный эффект турбонагнетателя, и нужно иметь это в виду. В действительности, при выборе турбины нужно ориентироваться на обороты, достаточные для обеспечения желаемой реакции и давления наддува, воздерживаясь от минимизации обратного давления.

Выбор размера колеса компрессора.

Необходимо выработать в себе понимание требуемых степени повышения давления, расхода воздуха, его плотности и эффективности компрессора прежде, чем приступать к выбору колеса компрессора подходящего размера.


Зависимость относительной плотности от степени повышения давления. Плотность падает при увеличении температуры,
поэтому фактическая степень увеличения массы воздуха всегда меньше чем степень повышения давления.

Степень повышения давления

Степень повышения давления рассчитывается как полное абсолютное давление, произведенное турбокомпрессором, разделенное на атмосферное давление. Абсолютное давление означает давление выше ноля. Отсутствие давления это ноль, атмосферное абсолютное давление составляет 1 бар. 0,5 бара наддува создают 1,5 бара абсолютного давления, 0,8 бара наддува это 1,8 бара абсолютного давления и так далее. Таким образом, абсолютное давление — это показания манометра плюс 1 бар. Другими словами, степень повышения давления является значением произведенного давления относительно атмосферного.


Пример: Для наддува 0,5 бар:

В этом примере в двигатель с наддувом попадет приблизительно на 50 % больше воздуха , чем в двигатель без наддува.

Относительная плотность

В конечном счете, мощность, полученная от использования турбонаддува, зависит от числа молекул воздуха, упакованных в каждый кубический сантиметр объема. Это называется плотностью воздушного заряда. При прохождении через систему турбонаддува плотность немного изменяется. Когда воздушные молекулы принудительно «утрамбовываются» в нагнетателе до некоторой степени сжатия, плотность не увеличивается на то же самое значение, потому что при сжатии увеличивается температура, и воздух расширяется обратно в прямой зависимости оттого, насколько он нагрет. Хотя воздушный заряд после сжатия окажется более плотным, его плотность будет всегда меньше, чем степень повышения давления. Усилия разработчиков, направленные на использование эффективных турбокомпрессоров и промежуточных охладителей позволяют относительной плотности все ближе и ближе приблизиться к значению степени сжатия, но полное совпадение величин никогда не достигается.

Расход воздуха

Расход воздуха через двигатель обычно измеряется в кубических метрах воздуха в минуту при стандартном атмосферном давлении. Технически правильный, но реже используемый термин — килограммы в минуту. Мы будем использовать полуправильный термин «кубические метры в минуту».
Для вычисления расхода воздуха в двигателе без турбонагнетателя т.е. при отсутствии наддува:


Здесь расход воздуха выражается в м3, а объем в см3, 0,5 означает, что у четырехтактного двигателя воздух в цилиндр поступает только во время одного оброта из двух, Ev — объемная эффективность. Чисто 1000000 служит для конвертации кубических сантиметров в кубические метры.
Пример: Пусть объем двигателя = 2000 см3, частота вращения двигателя = 5500 мин-1, и Ev = 85 %.


Определив изначальный расход воздуха через двигатель, можно найти итоговый расход при работе с наддувом. Степень повышения давления, умноженная на расход воздуха через двигатель даст нам искомый расход (при пренебрежении объемным к.п.д.) . В двигателе объемом 2000 см3, работающем с наддувом 0,8 бара:
Расход воздуха = Повышение давления х Базовый расход воздуха =1,8*4,675 м3/мин = 8,415 м3/мин
Чтобы преобразовать м3/мин к более правильному термину кг/мин, м3/ мин надо умножить на плотность воздуха на высоте географического места (см. таблицу).


Значение расхода воздуха для четырех тактных двигателей. Выберите объем двигателя (ось абсцисс) и обороты в минуту, на оси ординат отсчитайте расход.

КПД колеса компрессора

Эффективность (КПД) колеса компрессора — это показатель того, как хорошо колесо компрессора может сжимать воздух, не нагревая его в большей степени, чем диктуют законы термодинамики. Термодинамика говорит, что температура воздуха должна увеличиваться пропорционально степени повышения давления. Такое увеличение температуры наблюдалось бы в идеальных условиях. Однако фактически температура всегда выше, чем в термодинамических расчетах. Измеренное увеличение температуры, конечно, является фактической температурой. Эффективность (КПД) — расчетное увеличение температуры, разделенное на её фактическое увеличение. По сути, эффективность — мера термодинамического совершенства компрессора.
Центробежные турбокомпрессоры имеют максимальный КПД порядка 70%. Выбор размера колеса компрессора становится, главным образом, вопросом того, где достигает максимума эффективность турбокомпрессора относительно характеристик расхода системы двигатель/турбина. Если Вам понятен физический смысл степени повышения давления, относительной плотности, расхода воздуха и эффективности компрессора, основная информация, необходимая для выбора компрессора под Ваши задачи, находится у Вас в руках.
Принято считать, что до 0,5 бара — низкое давление наддува, 0,5 — 0,8 бара — среднее, и более 0,8 бара — высокое давление наддува. В дальнейшем, на примере двигателя объемом 2000 см3 с несколькими вариантами компрессоров будут показаны примеры вычислений и поиска максимума эффективности.
На рисунке показано влияние эффективности компрессора на температуру впускного воздуха. Вообще, КПД компрессора без промежуточного охладителя должен составлять по меньшей мере 60%. Если система включает промежуточный охладитель, минимальный КПД может быть несколько меньше.

Высота над уровнем моря (м) Атмосферное давление (кг\см3) Температура (оС ) Относительная плотность
0 1.03 15 1.0
200 1.0 13.7 0.98
400 0.98 12.6 0.96
600 0.96 11.1 0.94
800 0.93 9.8 0.93
1000 0.91 8.5 0.91
1200 0.89 7.2 0.89
1400 0.87 5.9 0.87
1600 0.85 4.6 0.85
1800 0.83 3.3 0.84
2000 0.31 2.0 0.82
2200 0.79 0.7 0.8
2400 0.77 -0.6 0.79
2600 0.75 -1.9 0.77
2800 0.73 -3.2 0.75
3000 0.71 -4.5 0.74

Зависимости давления воздуха, температуры и относительной плотности от высоты места

Имея расчетные величины расхода воздуха и степени повышения давления на примере двигателя объемом 2000 см\ любой вполне способен взять в руки карты турбокомпрессоров и проверить, где расположена максимальная эффективность каждого из них, чтобы выбрать наиболее подходящий. Построим расчетные данные: расход воздуха 8,415 м3/мин и PR = 1,8 на осях карты турбокомпрессора. Пересечение этих двух линий показывает максимальный расход, который турбокомпрессор может обеспечить при выбранной степени повышения давления, и эта точка отображает эффективность в процентах на каждой карте. Таким образом, мы можем узнать КПД в этой точке, которая устанавливает пригодность того или иного турбокомпрессора для нашего конкретного применения. На рисунке  пересечение этих линий находится на линии 75 . На рисунке 2 пересечение находится фактически в точке максимальной эффективности, однако КПД будет всего около 71.На карте компрессора теперь наглядно видно, что компрессор Garreit G7255-R хотя и подходит по своей эффективности, но его максимальная эффективность меньше чем компрессора G/t GT2S60R5.

Компрессор G/t GT2860RS. Цифры справа — число оборотов турбины в минуту. Видно, что линия соединяющая точки PR=1 и РК=1,8 проходит за границей устойчивой работы компрессора.

Компрессор G/t GT2557R, не смотря на КПД, меньший чем у G/t GT2860RS, лучше подходит для заданного применения.

Характеристики переходных процессов колеса компрессора в случае конкретного применения также должны быть исследованы перед окончательным выбором. Это может быть сделано довольно простым способом. Предположим, что желаемая степень сжатия достигается на 50 % от максимальных оборотов двигателя. Отметьте эту точку на диаграмме турбокомпрессора. Выше был упомянут пример с оборотами в минуту = 2750, что соответствует точке с расходом воздуха 4,27 мЗ/мин и PR = 1,8. Постройте линию от этой точки до точки, соответствующей PR = 1 и значению расхода, равному 20% от максимального, что в нашем случае составит 1,68 м3/мин. Принципиально важно, чтобы эта линия полностью располагалась справа от линии на карте компрессора, обозначенной как граница помпажа. Граница помпажа (граница устойчивой работы) не всегда подписывается на картах турбокомпрессора, но Вы можете смело полагать, что ею является крайняя левая линия. Этот пример показывает, что компрессор G/t GT2557R, при КПД 71%, лучше подходит для выбранного применения чем G/t GT2860RS, с КПД 75%.

Температура нагрева воздуха в компрессоре в зависимости от степени повышения давления. Вот почему все хотят обеспечишь самую высокую возможную эффективности турбокомпрессора: большая эффективность — более низкая температура.

Выбор размера ротора турбины

Предполагаемое применение системы двигатель+турбонагнетатель является также основным критерием при выборе размера ротора турбины, поскольку определяет выбор между моментом на низких, средних или максимальных оборотах двигателя. При этом выборе приходится иметь дело с двумя величинами: основной размер ротора турбины и отношение площадь/радиус (A/R).

Основной размер ротора турбины

Предполагается, что основной размер ротора турбины характеризует её способность производить мощность на валу, необходимую для привода колеса компрессора при желаемом расходе воздуха. Поэтому большие турбины, вообще говоря, обеспечивают более высокие отдаваемые мощности, чем небольшие. Для простоты картины оценивать размер турбины можно по диаметру её выходного отверстия. Строго говоря, это является упрощением теории турбин, однако на практике такой подход даёт возможность оценить способность турбины обеспечить тот или иной расход.

Диаграмма диаметра выходного отверстия ротора турбины относительно расхода воздуха на впуске — не точный инструмент для выбора, но приблизительный критерий первоначального отсеивания.

Определение диаметра выходного отверстия

Разумный метод выбора ротора турбины состоит в том, чтобы проконсультироваться с источником, у которого Вы приобретаете турбокомпрессор. Конечно, при выборе будет существовать возможность допустить ошибку в ту или иную сторону. И так как выбор происходит в пределах первоначального предназначения системы турбонаддува, имеет смысл выбирать каждый раз запас в большую сторону.

Приблизительный диаметр выходного отверстия ротора турбины, требуемый для привода колеса компрессора при заданном расходе воздуха

В то время как основной размер ротора турбины является критерием расхода газа через ротор турбины, отношение А/R даёт инструмент точного выбора из диапазона основных размеров. Чтобы легко понять идею отношения А/R, представьте кожух турбины в виде конуса, обернутого вокруг вала в виде спирали. Распрямите этот конус и отрежьте небольшой кусок на некотором расстоянии от конца. Отверстие в конце конуса -выходное сечение кожуха. Площадь этого отверстия это и есть «А» в отношении A/R. Размер отверстия существенен, поскольку он определяет скорость, с который выходят отработанные газы из улитки турбины и попадают на ее лопатки. При любом заданном расходе газов для увеличения скорости их истечения требуется уменьшение площади выходного отверстия. Эта скорость имеет существенное значение для управления частотой вращения ротора турбины. Необходимо иметь в виду, что площадь выхода влияет на побочный эффект обратного давления отработанных газов и, таким образом, оказывает влияние на процессы, протекающие в камере сгорания двигателя. «R» в отношении A/R — расстояние от центра площади сечения в конусе до оси вращения вала турбины.

Определение отношения A/R

Все «А», разделенные на соответствующие им «R», дадут одинаковый результат:

где A-площадьR-радиус

«R» тоже оказывает сильное влияние на управление скоростью ротора турбины. Представьте, что кончики лопаток ротора турбины движутся с той же скоростью, что и газ, когда он попадает на лопатки. Отсюда легко понять, что чем меньше «R», тем выше частота вращения ротора турбины. Следует заметить, что увеличение «R» дает прирост момента на валу турбины для привода рабочего колеса компрессора, поскольку та же самая сила (поток выхлопных газов) прикладывается на большем плече рычага (R). Это позволяет приводить большее рабочее колесо компрессора, если этого требуют условия применения. Тем не менее, чаще всего при выборе турбины варьируют параметр «А», в то время как радиус остается постоянным.

Увеличение скорости вращения турбины, которая зависит от отношения А/R, почти всегда достигает с изменением площади выходного сечения кожуха турбины при остающемся неизменном радиусе.

Выбор, который кажется логичной отправной точкой для отношения A/R — это одно, а фактически полученный правильный результат — это совсем другое. Обычно неизбежны пробы и ошибки.

Эффект изменения отношения А/R,все прочие параметры неизменны.

Разумный выбор может быть обоснован количественным образом или, в некоторой степени, качественной характеристикой адекватности реакций турбо системы. Количественная оценка требует измерения давления в выпускном коллекторе или на входе турбины и сравнения его с давлением наддува. Результатом неправильного выбора отношения А/R может стать увеличение инерционности наддува, если отношение слишком велико. Отношение А/R может быть столь большое, что не позволит турбокомпрессору развить обороты, достаточные для достижения желаемого давления наддува. Если отношение, напротив, чрезмерно мало, реакция турбокомпрессора может быть столь быстра, что будет казаться нервной и трудной для управления. Результат проявится и в виде отсутствия мощности в верхней трети диапазона оборотов двигателя. Это будет похоже на атмосферный двигатель с небольшим карбюратором, у которого закрыта воздушная заслонка.

Разделенный выхлопной коллектор

Разделенный выхлопной коллектор позволяет импульсам выхлопных газов быть сгруппированными (или отделенными) по цилиндрам на пути к турбине. Ценная идея такого технического приёма состоит в том, чтобы донести энергию каждого импульса выхлопа к турбине нетронутой с энергией других импульсов. Это может давать ротору турбины немного больший толчок, который заставит ее вращаться. Если рассматривать случай абсолютного разделения импульсов и энергии, подводящихся по выхлопным каналам от восьмицилиндрового двигателя, то ротор турбины получит большее количество энергии, чем это необходимо почти в любой ситуации. Таким образом, разделенный выхлопной коллектор не будет давать значительного улучшения на V8 с одним турбонагнетателем. Для сравнения, четырехцилиндровый двигатель, в котором один рабочий ход происходит каждые 180° вращения коленчатого вала, нуждается во всей энергии, которую он может получить от каждого выхлопного импульса. Сохранение этих импульсов изолированными и не подверженными интерференции позволит получить некоторые улучшения.

Улитка турбины с разделенным входом теоретически дает небольшое преимущество в характеристиках, обеспечивая подачу импульсов выхлопа в плотной связке к ротору турбины. Этот эффект более заметен в случае двигателей с меньшим числом цилиндров, имеющих таким образом меньшее количество импульсов за каждый оборот двигателя

Две турбины или одна?

Существуют несколько причин для ложного предоставления о целесообразности использовании двух турбин там, где могла бы работать одна. Вероятно, наиболее популярное мифическое преимущество двух турбин взамен одной связано со снижением инерционности. Это заблуждение вообще трудно оправдать. Разделение пополам энергии выхлопа, подаваемой в каждую из двух турбин пропорционально квадрату инерции и кубу расхода газов, необязательно способствует уменьшению инерционности. Несколько турбин подразумевают большее количество мощности, которая зависит от эффективности турбокомпрессора. При прочих равных условиях, выбор турбины большой более эффективен, чем малой.

Для использования двух турбин должны существовать серьезные основания. В частности, такой вариант может быть актуальным в случае V-образных или горизонтальных оппозитных двигателей. Конструкция выпускного коллектора — один из ключей к получению большой мощности, и компоновка с двумя турбонагнетателями, вообще говоря, может сделать конструкцию более совершенной. Потери тепла в окружающую среду из перекрестной трубы в V-образных двигателях может быть значительна. Помните, что это та самая теплота, которая приводит в действие турбину.

Компоновка с двумя турбонагнетателями обычно требует двух вестгейтов. Другая, не менее важная задача — синхронизация этих двух вестгейтов, может быть достигнуто намного лучшее управление скоростью турбины при низких давлениях наддува. Стабильность давления наддува при высоких расходах газов также улучшена. Если используются внешние вестгейты, в отличии от интегрированных, фактическое проходное сечение для отработанных газов может быть увеличено, установив отдельные выхлопные трубы для вестгейтов.

Большая площадь сечения выхлопа для турбины — это всегда усовершенствование системы. Выхлопные трубы от двух турбин будут фактически всегда давать большее увеличение расхода. Например, две трубы диаметром 50 мм обеспечивают существенно большее проходное сечение, чем одна труба диаметром 75 мм.

Еще одна причина превосходства двух турбин при известных условиях то, что теплота разделяется между двумя агрегатами, позволяя каждому, работать с более низким подводом тепла. Теплота, поглощенная материалом турбонагнетателя пропорциональна температуре газов и их массовому расходу. Температура останется тот же самой, но массовый расход газа будет уменьшен вдвое. Таким образом рабочую температуру турбокомпрессора можно понизить, а его предполагаемый срок службы несколько увеличить.

Полезные детали конструкции:

Корпус турбины с жидкостным охлаждением.

Корпус турбины с жидкостным охлаждением — разновидность конструкции, которая может увеличить срок эксплуатации турбокомпрессора в среднем в два раза. Наличие потока охлаждающей жидкости существенно снижает нагрев смазочных материалов при их прохождении через подшипники. Пониженные температуры предохраняют масло от превращения в то, что называют маслом марки X в рекламе Mobil 1. Твердые отложения, накапливающиеся внутри турбокомпрессора, блокирующие, в конечном счете, поток масла и убивающие турбокомпрессор, являются страшной болезнью, названной «закоксовка среднего корпуса турбины» Жидкостно охлаждаемый корпус был создан, потому что слишком многие владельцы автомобилей не удосуживались менять масло по графику, продиктованному наличием турбокомпрессора. Как ни странно, присутствие корпуса турбины с жидкостным охлаждением не предполагает серьезное увеличение интервалов замены масла.

Поворот  улитки турбонагнетателя.

Возможность поворота одной улитки турбокомпрессора относительно другой является полезной особенностью конструкции. Хотя интегрированный весггейт предлагает ряд удобств при проектировании неспортивных систем турбонаддува, он обычно не позволяет улиткам турбокомпрессора поворачиваться на 360″ относительно друг друга. Ограничение поворота улиток может серьезно препятствовать свободе компоновки системы турбонаддува в моторном отсеке.

Соединения турбонагнетателя.

Фланцы кожуха турбины, которые соединяют турбокомпрессор с выпускным коллектором и выхлопной трубой — два наиболее вероятных места неисправностей в системе. Тепловые деформации, конструкция крепежа и прокладок — всё это нельзя сбрасывать со счетов. Вообще говоря, фланцы с большим количеством крепёжных элементов и более толстыми улитками перенесут нагрев с меньшим количеством проблем. Некоторые роторы турбины изготовлены из жаропрочных сплавов с повышенным содержанием никеля. Такие материалы дают заслуживающее внимание увеличению стойкости к высокой температуре и вследствие этого увеличивают долговечность улитке выхлопа.

Выход холодной улитки турбины почти всегда имеет соединение при помощи гибкого патрубка. Гибкость в этом соединении обычно необходима для компенсации возникающих тепловых деформаций турбокомпрессора. Системы с высоким уровнем наддува могут потребовать установки соединительного стержня на выходном патрубке для обеспечения прочности воздуховода, подверженного значительным растягивающим усилиям.

На входе улитки турбины также применяются соединения с использованием гибких патрубков. Их применение допускается в тех системах, где перед турбокомпрессором к воздуху не примешивается топливо. При расположении турбины после карбюратора (в системах с протяжкой воздуха через карбюратор), использования любых резиновых деталей между карбюратором и турбонагнетателем нужно избежать, поскольку топливо будет разрушающе воздействовать на резиновый патрубок. Патрубок большого диаметром позволяет использовать больший диаметр входа в турбину. Большой диаметр на входе обеспечивает низкие потери, а это жизненно необходимо для турбокомпрессора. Будьте уверены, что все патрубки и соединения достаточно жестки, чтобы избежать деформации от небольшого разрежения, созданного воздушным фильтром и расходомерами воздуха, если они имеются.

Выбор турбины и расчёт производительности

4.91 (98.25%) 57 голосов


remont-turbiny.ru

Как правильно подобрать турбокомпрессор? — DRIVE2


Важен ли правильный выбор размера турбины?
Правильно подобранный турбокомпрессор обеспечит уверенные обороты порога наддува, некритичное сужение системы, низкую температуру на впуске и невысокое давление в выпускном коллекторе. Любой человек умеющий читать и пользоваться телефоном, вполне может выбрать правильный размер турбонагнетателя. Никакой фундаментальной науки, никакого волшебства, только немного размышлений и аргументированных оценок. Например, Вы хотите самый низкий порог наддува? Хорошо, это возможно если вы проводите время в пробках. Это единственный случай когда важен низкий порог наддува. Будьте уверены – белее низкий порог наддува, меньшая мощность. С другой стороны, если вашей целью является максимальная мощность, турбонагнетатель нужного размера, скорее всего, не будет производить никакого давления наддува до верхней половины диапазона оборотов. Это неприемлемо с точки зрения гибких требований, предъявляемых к повседневному автомобилю. Необходим компромисс. Не скатывайтесь до низкого уровня журналистов, утверждающих, что качество системы турбонаддува характеризуется тем, сколь малые обороты нужны ей от двигателя, для создания наддува.

Конструкция турбонагнетателя влияет на его характеристики?
Нет. Фактически все турбины долговечны, эффективны и отвечают предъявленным требованиям. Характеристики турбокита никоим образом не связаны с моделью турбокомпрессора, если эта модель не является единственным турбонагнетателем требуемого размера, доступным для применения. Некоторые конструкции имеют встроенные вестгейты. Такое исполнение вестгейта требует немного больших усилий, чтобы сделать его столь же эффективным, как внешний вестгейт. В этом случае модель турбонагнетателя влияет на его характеристики, но только из-за интегрированного вестгейта.

Сдвоенные турбины дают какое-либо преимущество?
Иногда. Двигатель объемом более трех литров, может получить пользу от применения двух турбин. Две небольшие турбины могут слегка снизить инерционность турбосистемы, в противоположность одному большому турбонагнетателю, и обеспечивают лучший баланс между характеристиками наддува на низких и максимальных оборотах. При объеме более пяти литров, две турбины действительно станут необходимостью. Не подумайте, что парные турбины турбины более мощные, просто при их использовании накладывается очень много прочих факторов.

Что означает эффективность (КПД) компрессора и почему она важна?
Эффективность (КПД) компрессора не означает ничего иного, как реальную температуру воздуха, выходящего из турбонагнетателя при наддуве, относительно расчетного значения, основанного на термодинамических уравнениях. Вычислите одно значение, измерьте другое, разделите расчетное значение на измеренное, и вы получите эффективность компрессора. Соответствие эффективности компрессора конкретному двигателю важно в том, чтобы максимум эффективности компрессора находился где-нибудь около пика мощности или максимальных оборотов двигателя, чтобы компрессор давал самую низкую возможную тепловую нагрузку. “Высокоэффективный” является выражением дилетантов, изобретенный случайными авторами для описания турбокомпрессоров, обеспечивающих давление наддува на низких оборотах. Если что-то может быть совершенно неправильным, то это пример того. Давление наддува на низких оборотах означает не большой компрессор, который является не эффективным на высоких оборотах. Таким образом, он производит высокие температуры и является как раз противоположностью “высокоэффективному”

Давление в выпускном коллекторе, влияет ли на характеристики?
Да. Давление в выпускном коллекторе – критерий того, насколько хорошо турбина подобрана для конкретного двигателя. Давление в выпускном коллекторе не должно превышать давление наддува более чем в два с половиной раза. Это соблазняет изготовителей турбокита использовать слишком малые турбины, только для того, чтобы выдавать давление наддува на низких оборотах. Низкий порог наддува может быть и полезным, но переусердствовать при этом означает получить серьезную, более 20%, потерю мощности на оборотах выше средних. Необходимый баланс между наддувом на низких оборотах и наддувом на максимальных оборотах – задача проектирования, которую должен решать каждый решившийся на установку турбины. В общем, меньшее давление в выпускном коллекторе означает большее количество лошадиных сил. Другими словами, большие турбины бегают быстрее.

С небольшим нагнетателем точка максимальной эффективности достигается рано, и минимум тепловыделения будет на низких давлениях наддува. Чтобы снизить температуру при достижении большой мощности, необходим большой турбонагнетатель.


Когда точка максимальной эффективности находится на более высоких оборотах, это означает более низкую температуру воздуха в этом режиме. Более низкая температура дает более плотный воздух, который обеспечивает пик момента в верхнем диапазоне оборотов.

Выбор размера компрессора.

Необходимо понять нужную степень повышения наддува, степень расхода и плотности воздуха и степень эффективности нагнетателя перед тем, как приступать к подбору нагнетателя нужного размера.

Степень повышения давления.

Степень повышения давления расчитывается как полное абсолюдное давление, произведенное турбиной, разделенное на атмосферное давление.
Степень сжатия = 1+наддув/1

Относительная плотность.

В конечном счете, мощность, полученная от использования турбонаддува, зависит от количества молекул кислорода в воздухе, сжатых в каждый кубический сантиметр объема. Это называется плотностью воздушного заряда. При прохождении через систему турбонаддува плотность немного изменяется.Когда воздушные молекулы принудительно "утрамбовываются" в нагнетателе до определенной степени сжатия, плотность не увеличивается на тоже самое значение, потомучто при сжатии увеличивается температура, и воздух расширяется обратно в прямой зависимости от того насколько он нагрет. Хотя воздушный заряд после сжатия окажется более плотным, его плотность будет всегда меньше, чем степень повышения давления. Для снижения негативного фактора этого эффекта применяют промежуточные охладители, позволяющие относительной плотности приблизиться к значению степени сжатия.

Зависимость относительной плотности от степени повышения давления. Плотность падает при увеличении температуры, поэтому фактическая степень увеличения массы воздуха всегда меньше чем степень повышения давления.


Расход воздуха.

Расход воздуха равен обьему х обороты х 0.5 х Ev и поделенному на 1000000. Здесь 0.5 означает, что у четырех тактного двтгателя воздух в цилиндр поступает только в один оборот из двух, Ev это объемная эффективность. Делим на 1000000 для того, чтобы получить кубические метры из кубических см. Чтобы преобразовать кубические метры к кг/мин надо умножить на плотность воздуха на высоте географического места положения.

Значение расхода воздуха для четырех тактных двигателей .



Выбор размера турбины.

Предполагаемое применение системы двигатель+турбонагнетатель является также основным критерием при выборе размера турбины, поскольку определяет выбор между моментом на низких, средних или максимальных оборотах двигателя. При этом выборе приходиться иметь дело с двумя величинами: основной размер турбины и отношение площадь/радиус (A/R).

Основной размер турбины.

Предполагается, что основной размер турбины характеризует ее способность производить мощность на валу, необходимую для привода компрессора при желаемом расходе воздуха. Поэтому большие турбины обеспечивают более высокие отдаваемые мощности, чем не большие. Для простоты картины, оценивать размер турбины можно по диаметруее выходного отверстия. Это является упращением теории турбин, однако на практике такой подход дает возможность оценить способность турбины обеспечить тот или иной расход.

Компрессор Garrett GT2860RS. Цифры справа — число оборотов турбины в минуту. Видно, что линия соединяющая точки PR=1 и PR=1.8 проходит за границей устойчивой работы компрессора.


Компрессор Garrett GT2557R, несмотря на КПД, меньший чем у Garrett 2860RS, лучше подходит для заданного применения.

Диаграмма диаметра выходного отверстия турбины относительно расхода воздуха на впуске — не точный инструмент для выбора, но приблизительный критерий первоначального отсеивания.

Разумный метод выбора турбины состоит в том чтобы проконсультироваться в компании, у которой вы приобретаете турбокомпрессор. Конечно, при выборе будет существовать возможность допустить ошибку в ту или иную сторону. И так как выбор происходит в пределах первоначального предназначения системы турбонаддува, имеет смысл каждый раз выбирать в большую сторону.
Выбор отношения A/R

Приблизительный диаметр выходного отверстия турбины, требуемый для привода компрессора при заданном расходе воздуха.


В то время как основной размер турбины является критерием расхода газа через турбину, отношение A/R дает инструмент точного выбора из диапазона основных размеров.Чтобы понять идею отношения A/R, представте кожух турбины в виде конуса, обернутого вокруг вала в виде спирали. Распрямите етот конус и отрежьте небольшой кусок, на некотором растоянии от конца. Отверстие в конце конуса — выходное сечение кожуха. Площадь этого отверстия и есть A в отношении A/R. Размер отверстия существенен, поскольку он определяет скорость, с которой выходят отработанные газы из улитки турбины и попадают на ее лопатки. При любом заданном расходе газов для увеличения скорости их истечения требуется уменьшение площади выходного отверстия. Эта имеет существенное значение для управления частотой вращения турбины. Необходимо иметь ввиду, что площадь выхода влияет на побочный эффект обратного давления отработанных газов и, таким образом, оказывает влияние на процессы, протекающие в камере сгорания двигателя.

R в отношении A/R — растояние от центра площади сечения в конусе до оси вращения вала турбины. Все A, разделенные на соответствующие им R дадут одинаковый результат.


R тоже оказывает сильное влияние на управление скоростью турбины. Представьте, что кончики лопаток турбины движутся с той же скоростью, что и газ, когда он попадает на лопатки. Отсюда легко понять, что

www.drive2.ru

Подбираем турбокомпрессор или как читать турбокарту — DRIVE2

В интернете я как-то находил статью по этому поводу, но она мне не понравилась. теоретические VE + не бары а непонятные PSI… фу. Кто-то занимался переводом с американцев. а не писал под суровую реальность наших моторов. Так как я считаю, что умею это делать достаточно хорошо, постараюсь описать данный процесс.

ЭТАП 1
анализ мотора, на который хотим прикрутить турбокомпрессор.
Нужно узнать, сколько расходует двигатель воздуха.
либо теоретическим расчетом, либо тупо снять логи с мотора (подключить комп, запустить логер (например ICD), и записать данные)
Я записал логи своего стандартного двигателя ВАЗ 2112
Вот лог массового расхода воздуха двигателем, единицы измерения: Кг/ч.


переводим лог в новый файл для расчетов, я беру средние значения для каждой тысячи оборотов.

затем определяем какой уровень буста нас интересует.
например хотим дунуть 1 бар избытка.
это означает, что степень повышения давления будет 2
По школьной физике известно, что если сжать воздух в 2 раза, то его масса вырастет также в 2 раза, при условии что остальные параметры не изменились.
турбокомпрессор греет воздух, из-за КПД ниже 100% и из-за адиабатного сжатия воздуха. Но мы будем считать, что установленный интеркулер полностью остужает воздух до температуры до турбокомпрессора и что плотность воздуха не изменится
Поэтому для буста один бар мы умножаем массовый расход в 2 раза:

запомнили? синий график это атмосферное давление, красный график это буст 1 бар во всем диапазоне
от ХХ до отсечки.

ЭТАП 2
Теперь самое интересное. открываем, читаем турбокарты, соотносим возможности турбокомпрессора с расходом нашего двигателя.

самое интересное, что турбокарты разные производители приводят в разных единицах.
по вертикальной оси у всех находится один показатель: СТЕПЕНЬ ПОВЫШЕНИЯ ДАВЛЕНИЯ.
а по горизонтали или объемный расход воздуха, или массовый расход воздуха, массовый бывает в разных величинах. Гаррет приводит в фунтах в минуту. а У нас принято килограмм в секунду.

у меня расчет расхода воздуха указан килограмм в час.

так как я приведу пример с Гарретом GT2860RS, вот его турбокарта


важное замечание, тут показана турбокарта компрессорного колеса турбокомпрессора. турбинную часть пока не трогаем.
чтобы занести в нее показатели расхода воздуха нашего двигателя, переведем их в фунты в минуту.
Конвертация по такому правилу: 1lb/min=27.21554кг/час
получаем вот такую таблицу нашего двигателя:

Дальше данные красного графика равного бусту 1 бар заносим на турбокарту указывая обороты двигателя отдельными точками 1 это 1000, 2 это 2000 и так далее.


это самый важный рисунок.
Наш двигатель нанесен красным цветом, он лежит горизонтально, потому что было условие что весь график соответствует бусту 1 бар, а избыток 1 бар это степень повышения давления 2 (1бар атмосферное давление, и 1 бар избыток)
поэтому весь красный график лежит на уровне 2
точки по оборотам расставлены согласно расхода воздуха. который мы вычислили ранее.

как видим по графику в рабочую зону компрессора
попадают обороты выше 3500. Это означает, что нужный нам буст 1 бар мы получим с гарретом 2860 на оборотах 3500 и выше. это первый важный вывод.

второе, по турбокарте мы не достигли даже середины (где компрессор работает с наибольшей эффективностью) это значит, что наш двигатель с этим турбокомпрессором имеет БОЛЬШОЙ потенциал для увеличения мощности.
у нас на 1 баре получилось массовый расход 18,4 фунта в минуту, а турбина может дать 35 фунтов в минуту, это крайняя правая часть графика турбокарты.
у нас получилось примерно чуть меньше 200 л.с.
а турбина по заявлению гаррет может дать 360 л.с.
чтобы их выжать, нужно запилить головку, закинуть в нее валы, поставить правильный ресивер, можно даже увеличить рабочий объем. то есть сделать все то, что увеличит пропускную способность двигателя даже без буста. (с бустом будет пропорционально выше)

если правильнее рисовать наш мотор на турбокарту. надо посмотреть, куда могут попасть по турбокарте более низкие обороты чем 4000.
поиск на меньшем давлении для 3000 показал, что буст там есть 0,25 бар. но более низкие обороты никакого буста не дают. совершенно никак не попадают в турбокарту, расход воздуха слишком мал, а это значит, что воздуха не хватит вывести турбокомпрессор в зону рабочих оборотов.
вот что получилось:


после 3х тысяч оборотов резкий выход на буст.
те же цифры буста для тех же оборотов
на скорректированном графике расхода воздуха двигателя по оборотам в сравнении со стандартом:

как-то так чтоле…

www.drive2.ru

Базовые знания о турбонаддуве (часть 2). Подбор турбины по турбокарте — DRIVE2

Привет всем неравнодушным!))

Продолжаем тему турбонаддува. Сегодня предлагаю разобрать на конкретном примере подбор турбокомпрессора на конкретный двигатель, научиться пользоваться турбокартами, ну и получить еще немного теории в вопросах турбомоторов.

Сразу оговорюсь, что расчет в итоге получится теоретическим и довольно грубым, для более точного расчета нужно вносить поправки, которые рассчитываются по-своему и займут добрую половину этой статьи, поэтому для них я выделю отдельную тему, а сейчас я вам дам теорию в вопросе подбора турбины.

Перед тем как приступать к самому интересному, я разъясню вам некоторые термины, без которых будет трудно понять о чем здесь.

Абсолютное и относительное давление.

Под термином абсолютного давления подразумевают — давление относительно полного вакуума, на земле это давление принято считать равным 1 атмосфере.

Относительное давление — это давление относительно атмосферного. Оно может быть как больше, так и меньше его.

Избыток — под понятием избытка в ДВС понимают давление свыше атмосферного.

Оперировать мы будем абсолютными величинами.

Итак, перед тем как подбирать турбину, нужно проанализировать мотор, на который она будет установлена. Если мы устанавливаем турбокомпрессор на двигатель, который был изначально атмосферным, то все довольно просто: берете ноутбук и идете снимать лог расхода воздуха. По логу отстраиваете график зависимости расхода воздуха от оборотов, и получаете что-то вроде этого.

Скорость вращения двигателя указывается в об/мин, а массовый расход на данном графике в граммах в секунду.

Если же мотор изначально турбо, то снять логи расхода воздуха без повышения давления не получится, потому что воздух будет нагнетать уже имеющаяся турбина. В этом случае можно воспользоваться расчетным методом расхода воздуха.

Расход воздуха в этом случае, высчитывается по формуле:

расход воздуха = V х RPM х 0,5 х E / 1000000

Где

V=Объем (куб./см.)

RPM= скорость вращения двигателя (об./мин.)

0,5= это добавочный коэффициент, указывающий на количество тактов впуска. (За два оборота коленчатого вала, двигатель совершает 1 такт впуска)

E= Коэффициент наполнения

1000000 служит для преобразования кубических сантиметров в кубические метры.

Здесь отдельное внимание нужно уделить коэффициенту наполнения, но это тема для совсем другой статьи, поэтому возьмем усредненное значение 0,85.

Выстраиваем график расхода воздуха, пользуясь формулой выше, для каждой тысячи оборотов свое значение расхода. Для примера возьмем двигатель 1.8.

1800 x 1000 x 0,5 x 0,85 / 1000000 = 0,76м3/мин, сразу же переводим объемный расход в массовый. Перевести его можно по формуле:

Qm=ρ*Q

где:

ρ — плотность воздуха;

Q — объёмный расход.

Плотность воздуха меняется в зависимости от его температуры и еще ряда факторов, которые мы учитывать не будем. Возьмем плотность воздуха при температуре +20 градусов и нормальном атмосферном давлении в 1 атм — 1,204 кг/м3.

1,204*0,76=0,915 кг/мин

Сразу же предлагаю конвертировать метрические единицы в американские т.к. турбокарты обычно строятся в единицах Lb/mib (фунты в минуту). Конвертируем по такому курсу 1кг/мин=2.205 lb/min

0,915 кг/мин = 2.017 lb/min

Получился вот такой график:

Стоит отметить, что в реале этот график будет более изогнут, т.к. мы не высчитывали такую переменную, как коэффициент наполнения, она будет меняться в зависимости от строения газораспределительного механизма, на высоких оборотах он будет меньше.

Теперь рассмотрим такой параметр, как pressure ratio, дословно переводится как — степень повышения давления. Этот параметр говорит нам о том, во сколько раз компрессор сжал воздух. Посчитать его можно по формуле

PR = Pcr/Pin
Где:
PR — соотношение давлений
Pcr — абсолютное давление на выходе компрессора
Pin — абсолютное давление на входе компрессора

Допустим, что мы хотим дунуть в наш двигатель 1 атм. избытка. В голове держим правило, что наддув это давление относительное, а мы оперируем абсолютными величинами, поэтому прибавляем к наддуву 1 атм. атмосферного давления и запоминаем 2 атм. абсолютного давления. Pressure ratio будет равно PR = Pcr/Pin = 2.0/1.0 = 2.0

В реальности по такой формуле рассчитать Pressure Ratio можно только для гоночного автомобиля, или для автомобиля без воздушного фильтра, т.к. параметр Pin — абсолютное давление на входе компрессора, будет меньше из-за создаваемого воздушным фильтром разряжения оно колеблется от 0.03 до 0.10 атм, но мне встречались двигатели, в которых этот параметр достигал 0.12 атм. Поэтому для расчета PR нужно вносить поправки… Предположим, что на нашем двигателе разряжение перед компрессором 0.06 атм; тогда расчет получается таким

PR = 2.0/(1.0-0.06) = 2.0 / 0.94 = 2.127

Степень повышения давления мы выяснили, осталось выяснить каков будет расход воздуха на бусте и нанести все это на turbomap. Как известно, при повышении давления масса воздуха растет пропорционально, мы не будем вносить поправки на повышение температуры при сжатии, будем считать, что интеркуллер и обдув остудят воздух до входной температуры. Из этого следует, что весь наш график надо умножить на PR, который мы получили чуть выше т.е. на 2.127.

Получается вот такая кривая

Теперь приступаем к самой интересной части — турбокарта.

Рассмотрим так полюбившуюся тюнерам VAGовских 1.8t турбину Garrett GT2860RS. Для начала расскажу о строении Turbomap.

Air Flow

По горизонтальной оси на турбокарте расположен массовый расход воздуха (Air Flow), он выражен в фунтах в минуту (lb/min). От этого параметра напрямую зависит мощность нашего двигателя, чем больше воздуха пропустим через мотор, тем больше мощности снимем. Прикинуть примерную мощность после установки той или иной турбины можно ориентируясь лишь на этот параметр, учитывая, что при прохождении через двигатель одного фунта воздуха мы получаем около 10 л.с.

Pressure Ratio

По вертикальной оси располагается параметр степени повышения давления (Pressure Ratio), его я описал чуть выше.

Скорость вращения вала турбины

Обозначена на карте линиями с указанием скорости, измеряется в оборотах в минуту об/мин.

Зоны эффективности компрессора

На карте обозначаются в процентах. Наименьшая зона в центре будет самой эффективной. На данной турбокарте эффективность работы турбокомпрессора указана до 60%, далее его использование становится не эффективным — сжимаемый воздух начинает слишком сильно греться, обороты вала турбины выходят за допустимые значения.

С другой стороны карты, граффик ограничивает так называемая область Surge

Работа турбокомпрессора в данной области чревата его повреждениями. Попасть в эту зону можно в двух случаях:

Первый происходит в связи с резким закрытием дросселя при сбросе газа. В этом случае расход воздуха резко падает, а компрессор еще создает давление по инерции. В этом случае мы моментально попадаем в зону Surge. Бороться с этим явлением призваны клапана типа байпас или blow-off. Байпас перепускает лишнее давление обратно на вход в компрессор, а Blow-off спускает его в атмосферу.

Второй случай попадания в зону surge — это езда на высоких передачах "в натяг". Такой режим работы более опасен, чем резкое закрытие дросселя, потому что может продолжаться значительно дольше. Вызван он тем, что скорость вращения турбины довольно велика, а массовый расход наоборот не велик. В основном причиной попадания в эту зону служит неправильно подобранная турбина, она слишком большая для данного двигателя.

Теперь самое время перенести наш заранее подготовленный график расхода воздуха на турбокарту. Выбираем на вертикальной оси степень повышения давления, которую мы ранее находили в расчетах — 2.127, и по горизонтальной оси проставляем точки в соответствии с расходом воздуха, названием точек будут обороты двигателя.

Так выглядит наш двигатель на турбокарте. Из графика видно, что на требуемый буст компрессор выйдет где-то с 2600 об/мин. Самого большого КПД компрессор достигнет на 6000 об/мин. Примерная максимальная мощность достигнет 300 л.с. Из этого можно сделать вывод, что GT2860RS будет отличным дополнением двигателя 1.8.

Вот собственно и все, мы разобрались со всем, что до этого вызывало кучу вопросов. Как всегда готов ответить на них в комментариях или по почте.

Пока)

www.drive2.ru

Интересная статья о турбинах. — DRIVE2

Когда люди говорят о гоночных машинах или мощных спортивных авто, рано или поздо всплывает тема турбин(турбо компрессоры также устанавливают на больших дизельных моторах). Турбина может существенно увеличить мощность двигателя без значительного увеличения его размеров/веса, что является основным преимуществом которое сделало турбины столь популярными.

В данной главе вы узнаете о том как турбокомпрессор увеличивает отдачу двигателя работая в экстримальных условиях. Также вы узнаете как вестгейты, керамические крыльчатки турбин и шарикоподшипники помогают турбокомпрессорам выполнять свою работу еще лучше. Турбокомпрессоры — тип усиленной впускной системы. Они сжимают воздух во впускном тракте. Преимущество сжатия воздуха в том что двигатель получает возможность «запихнуть» в камеру сгорания больший объем воздуха, а большему кол-ву воздуха нужен больший объем топлива. Таким образом мы получаем больше мощности от каждого взрыва в каждом циллиндре. Турбированный двигатель производит больше мощности по сравнению с таким же НЕ турбированным двигателем. Турбина может значительно улучшить соотношение мощность/вес для вашего двигателя.

Для раскрутки/буста турбина использует поток выхлопных газов которые вращают крыльчатку турбины, которая в свою очередь соединена(находится на том же валу) с крыльчаткой аэро компрессора. Скорость вращения турбины может достигать150тыс. об./мин что почти в 30 раз быстрее скорости вращения самого двигателя. Естественно что при таких условиях работы, температура турбины тоже очень высока.

Основы.

Одним из верных способов увеличения мощности двигателя является увеличение объема газо-бензиновой смеси которое он может сжечь. Этого можно достичь увеличив кол-во циллиндров, или сделать имеющиеся циллиндры больше. Иногда подобные изменения могут не дать должного эффекта, в отличие от турбины, которая является более простым, компактным решением для увеличения мощности, особенно если речь идет о производителях тюнинговых решений.

Турбины позволяют двигателю сжигать большее кол-во газо-топливной смеси путем большего нагнетания ее в имеющуюся камеру сгорания. По сравнению с обычным двигателем, турбина может нагнетать до 50% больше газотопливной смеси в камеру сгорания. Установкой турбины можно достичь 40-го % прироста мощности двигателя. Статья взята из паблика Машины. Справедливо ожидать 50-ти процентного прироста мощности, но все не так замечательно, и вот почему. Установка турбины накладывает определенные ограничения на выпускную систему, тк выхлопные газы проходят через крыльчатку турбины, тем самым увеличивается сопростивление потоку выхлопных газов, что в свою очередь отнимает часть КПД от взрывов в циллиндрах которые происходят одновременно.

Турбокомпрессор и двигатель.

Турбокомпрессор устанавливается на выпускном коллекторе. Выхлопные газы раскручивают крыльчатку турбины которая работает по принципу газотурбинных двигателей. Вал турбины соединен с валом воздушного компрессора который схематически находится между воздушным фильтром и впускным коллектором. Компрессор нагнетает воздух в камеру сгорания двигателя.

Поток выхлопных газов проходящих сквозь крыльчатку турбины, разгоняет ее. Чем больше давление выхлопных газов оказываемое на крыльчатку турбины, тем быстрее она раскручивается.

На другом конце вала турбины установлен воздушный компрессор который нагнетает воздух в камеру сгорания. Компрессор работает по принципу центрифуги — он раскручивает воздух от центра к краям крыльчатки по ходу вращения.

Тк вал турбины раскручивается до огромных скоростей(150тыс об./мин.), необходимо обеспечить его надежную поддержку/закрепление. Большая часть подшипников взорвалась бы на таких скоростях, по этому в большей части турбокомпрессоров используется жидкий подшипник(маслянный клин). Данный тип подшипника поддерживает вал на тонком слое масла которое подается под давлением вокруг него(между валом и стенкой подшипника). Это делается по 2-м причинам:
1.Масло охлаждает вал и прилегающие части турбокомпрессора
2.Этот метод позволяет избежать большой силы трения между валом и стенками подшипника турбокомпрессора

Конструкция турбокомпрессора.

Одной из главных проблем связанных с использованием турбокомпрессоров является то что они не могут моментально обеспечить рабочее давление наддува(буст) когда вы нажимаете на педаль акселератора. Проходит определенное время до того как турбина разгонится и начнет обеспечивать рабочее давление наддува. Это явление называется лаг(задержка), то есть мы ощущаем лаг когда давим на педаль акселератора, затем спустя определенное время(лаг) машина выстреливает вперед.
Для уменьшения турбо лага необходимо уменьшить силу инерции вращающихся частей, главным образом путем уменьшения их веса. Это позволит турбине и компрессору разгоняться быстрее, и раньше опеспечивать рабочее давление наддува. Одним из верных способов уменьшения силы инерции турбины и компрессора является уменьшение размера самого турбокомпрессора. Не большой турбокомпрессор обеспечит рабочее давление наддува на низких оборотах двигателя значительно быстрее, но не сможет обеспечить нормальное давление наддува на высоких оборотах, когда двигателю необходим значительно больший объем воздуха.Также для небольших турбокомпрессоров существует опасность слишком быстрого вращения на высоких оборотах двигателя, когда большой объем выхлопных газов проходит сквозь турбину.
Большие турбокомпрессоры могут обеспечить достаточное давление наддува на высоких оборотах двигателя, но им присущь больший турбо лаг тк их турбина и компрессор имеют больший вес и как следствие разгоняются дольше. К счастью есть несколько способов побороть эту проблему.
У большинства автомобильных турбокомпрессоров есть вестгейт, который позволяет использовать небольшие турбокомпрессоры для уменьшения лага, а также предотвращает их слишком быстрое вращение на высоких оборотах двигателя. Вестгейт — это клапан который позволяет проходить потоку выхлопных газов в обход крыльчатки турбины. Вестгейт распознает давление наддува.Если давление слишком высоко это может означать что турбина вращается слишком быстро, в этом случае вестгейт отводит(открывает клапан) часть потока выхлопных газов от крыльчатки турбины, что позволяет снизить скорость вращения турбины.
В строении некоторых турбокомпрессоров вместо жидких подшипников(маслянного клина) используются шарикоподшипники. Но это не обычные подшипники — это супер точные подшипники созданные с использованием передовых технологий/материалов призванных допустить их использование на таких скоростях и температурах присущих турбокомпрессорам. Такие подшипники позволяют валу турбины вращаться с меньшим трением, чем в обычных жидких подшипниках. Также шарикоподшипники позволяют использовать меньший и более легкий основной вал, что тоже положительно сказывается скорости раскручивания вала, и уменьшении турбо лага.
Керамическая крыльчатка легче стальной, используемой в большинстве турбокомпрессоров. Это тоже позволяет турбине раскручиваться быстрее, что в свою очередь помогает уменьшить турбо лаг.

Компоненты турбокомпрессора.

В строении некоторых турбосистем используются два турбокомпрессора. Меньший турбокомпрессор раскручивается до рабочего давления наддува значительно быстрее, уменьшает лаг, пока больший турбокомпрессор раскручивается и срабатывает на высоких оборотах обеспечивая большее давление наддува.
Когда воздух сжимается — он подогревается и расширяется. Собственно часть от общего увеличения давления турбокомпрессором — результат нагрева воздуха до его попадания в камеру сгорания. Для того чтобы увеличить мощность двигателя необходимо «впихнуть» в камеру сгорания как можно больше молекул воздуха, а не просто воздух под большим давлением.
Интеркулер способствует увеличению мощности двигателя путем охлаждения сжатого воздуха который поступает из компрессора, перед его попаданием в камеру сгорания. Это означает что турбокомпрессор способен обеспечить определенное давление наддува, а та же система с интеркулером способна обеспечить то же давление наддува, но уже охлажденного сжатого воздуха(в котором больше молекул чем в НЕ охлажденном воздухе).

Основные термины:
Порог наддува(Boost threshold) — минимальные обороты двигателя при которых создается положительное давление наддува во впускном коллекторе, при максимальной нагрузке на двигатель.
Турболаг — время между «тапкавпол» и моментом когда турбокомпрессор опеспечивает рабочее давление наддува.

Какая турбина САМАЯ лучшая? Нет лучшей турбины. Как правило все тюнинговые турбины делятся на эти несколько классов:
1.Турбины позволяющие немного увеличить мощность двигателя
2.Турбины позволяющие значительно увеличить мощность двигателя
3.Быстро раскручивающиеся турбины

Что необходимо заменить для установки тюнинговой турбины? Как правило для установки тюнинговой турбины необходимо заменить топливный насос, форсунки, и программу управления двигателем.(отсебятина: и, как мне кажется — выхлопную систему)

Существует ли какой-нить метод доработки турбины, который не потребует других доработок? Существует. К стоковой турбине можно применить процедуру port&polish(шлифовка и полировка внутренней поверхности улиток турбокомпрессора). Также на короткое время можно установить буст контроллер, но по большому счет установка бустконтроллера глупая затея.

Какая турбина лучше всего подходит для небольшого увеличения мощности двигателя? Наиболее широко применяемые турбины для этих целей: VF30/VF34 и 16G

Какая турбина лучшая в классе «быстрораскручивающихся» турбин? Наиболее широко применяемые турбины для этих целей: стоковые турбины с отшлифованными и полированными внутренними поверхностями улиток.

Выбераем турбу:

Для того чтобы сделать правильный выбор, сначала необходимо определить какой именно ТИП турбин больше всего подходит для ваших нужд. По этому мы обсудим самые распространенные типы турбин. Собственно здесь представленна базовая информация, не стоит использовать ее как ОСНОВНОЙ источник информации для выбора турбины, тк существует еще куча факторов влияющих на подобный выбор. Для более верного выбора проконсультируйтесь с продавцом турбин, или мастерами тюнинга(в таких конторах как Плеяда, или Альпина).
Обычная турбина.
Обычная турбина в сущности насос который «запихивает» воздух под давлением во впускную систему двигателя, в результате наддув сжатого воздуха поздоляет увеличить мощность двигателя, к чему, как правило мы и стремимся. Но не стоит забывать что больше мощности даст больше тепла, и внутренние компоненты двигателя должны соответствовать уровню тюнинга. Замена стоковой турбины на большую — самый простой, быстрый, дешевый и правильный метод. Обычно для подобных замен на турбовых версиях субар используют следующие турбины: VF-30/34/22 и 16/18/20G. Подобный тюнинг еще называют Bolt-on.
Твинскролловая турбина
Твинскролловая турбина может быть установлена только с равнодлинным выпускным коллектором. Это обусловлено внутренним устройством данной турбины, а также требованием чтобы давление потока выхлопных газов на крыльчатку турбины было всегда одинаковым, что позволит твинскролловой турбине раскручиваться быстрее по сравнению с обычной турбиной такого же размера. Данное требование(установка равнодлинного выпускного коллектора) является обязательным к исполнению, не позволяйте сбить вас столку недобросовестной рекламой твинскролловых турбин. Если сравнить твинскролловую турбину в характеристике которой указано 500 CFM(Кубических футов в минуту — это характеристика воздушного потока прогоняемого в единиху времени конкретным воздушным компрессором), и обычную турбину в характеристике которой указаны те же 500CFM, твинскролловая турбина раньше обеспечит рабочее давление наддува. Ну и собственно если вы выбрали 2-е подходящие по размерам турбины, одна из которых твинскролловая, другая обычная — твинскролл будет лучшим выбором если вы готовы смириться со значительными затратами на выхлопную систему, и предпочитаете турбину которая раскручивается быстрее обычной.
В отличие от установки обычной более производительной/большей турбины — твинскролл требует больше зат

www.drive2.ru

7 главных минусов и 2 плюса турбомоторов — журнал За рулем

Наддувные моторы постепенно вытесняют атмосферные. Однако некоторые производители сокращают интервал ТО для автомобилей с турбодвигателем. Почему? Давайте разбираться.

Чем турбомотор отличается от атмосферного?

Материалы по теме

Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.

Наддувный двигатель потребляет сжатый в компрессоре и охлажденный в интеркулере воздух. И тот же мотор является источником газов с высокими температурой и давлением, которые вращают турбину.

Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов...

1. Низкая надежность

Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

2. Недостаточный ресурс

Материалы по теме

Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

3. Необходимость более частого и высококвалифицированного обслуживания

Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

Наддувный мотор сложнее в обслуживании и особенно в 

www.zr.ru

быстрый, надежный городской турбо-кит — Лада 2112, 1.6 л., 2007 года на DRIVE2

…очень и очень частые вопросы, которые я получил в личку "сколько тебе стала турба?", "а что надо, чтобы собрать?", "а ты че такой дерзкий?" (шутка) и тд. Никогда не пытался посчитать, ибо это реально трудно, тем более учитывая, что в моем случае постоянно что-то меняется/дорабатывается/усовершенствуется.

Однако хочу рассказать и попытаться вывести какие-либо цифры про этап турбирования который предшествовал нынешней конфигурации, и который очень популярен среди турбирования ВАЗов вцелом на просторах родины. Попытаюсь вывести оптимальный рецепт и собрать всю необходимую инфу в одной записи с инструкцией к действию.

Итак, турбокит на основе не значительных доработок мотора, на турбине тд04(и ее моноскрольных модификаций), давление 1-1.4 бара, ориентировочная мощность 190-230лс. Примерный бюджет 2500-3500$(запчасти+работа+настройка)

Вцелом КОНЦЕПЦИЯ подойдет на многие бензиновые 4х цилиндровые двигатели с возможностью онлайн-настройки ЭБУ.

Начнем с запчастей

за основу я беру 16 клапанный двигатель ВАЗ 1.6 либо 1.5
— блок с маслофорсами
— стандартный коленвал 71 либо 75,6 в нулевом размере (без шлифовки)
— стандартные шатуны ваз 2110 121мм под плавающий палец

Идем на рынок и покупаем:
— поршни нива производства Тольяти (они самые качественные, необходимый размер и группу надо померять конечно же перед покупкой, об этом ниже) + кольца Mahle (лично мне они нравятся)
70-100$

— железная приоро-прокладка ГБЦ
20-30$

— внешний регулятор давления топлива 2,5-3 бара
15-20$ за ВАЗовский

— дроссель 54-56мм
30-40$

— вакуумный шланг 3м
— тройник классика
— тормозная трубка ваз под подачу масла на турбину (60-80см длинной)
— трубка печки классика под слив масла (обычно она стандартно подходит на большинство турбин по креплению)
10-15$ за всё

тройник и трубка печки

— трубы, гибы под выпуск (диаметр 57/63 мм, количество определится при сварке)
100-150$

— и еще всякая мелочевка, которая понадобится во время сборки
до 100$

Далее залазим в инет, ищем и заказываем:
— турба тд04(и ее моноскрольные модификации)
300-400$ за б/у в отличном состоянии. Полезная статья про проверку б/ушной турбины

TD04L

— прокладки по турбу (нижняя и под даунпайп) и под слив масла
20-30$

прокладки

— впускной ресивер турбо (объем 1,5-2л, желательно с дудками внутри) с цельными рогами (никаких резинок между рогами и ресивером, они порвутся) + прокладка под него
100-200$

Впускной турбо-ресивер Stinger

— выпускной коллектор под турбину тд04 + металическая прокладка под коллектор
100-150$

Выпускной турбо-коллектор Turbo-tema

— универсальный комплект пайпинга, силикона, т-хамутов (2-2,5 дюймов)
70-150$ за новый, китай, ходит отлично

— фронтальный интеркуллер с примерными размерами 550*140*65мм (потенциал ±350 сил)
100-150$ за новый, китай, ходит отлично

небольшой, но эффективный, без особых усилий влезет в переднюю часть авто

— бензонасос вальбро 255лч (не берите китайский! они долго не живут)
80-100$

— форсунки 440сс субару (либо аналогичные по производиетлньости ±)
100-150$ за б/у в отличном состоянии

— блоуофф (тут конечно выбор огромен)
50-200$

можно брать и китай, главное не самый говенный :)

— механический бустконтрллер либо ссылка
30-40$

— нулевик (не торопитесь покупать заранее, лучше уже после того как все установлено, чтобы подгадать с размером)
20-50$

— датчик давления турбо (хоть самый дешевый, главное чтобы хоть примерно внятно показывал)
10-15$ за самый простой китайский

— ДАД Motorolla MPX4250 (до 1,5 бара)
30$

— ДТВ GM либо переделать из датчика ОЖ
5-15$

Общая сумма деталей: 1300-2000$

Ешь сухомятку, копи на турбу )))

Накупили? Это было самое простое, собираем!

Теперь надо все собрать в кучу:

1. Работы по низу мотора:
— проверка на элипсность цилиндров, за неимением таковой расчет необходимого диаметра новых поршней. если элипсность присутствует и выходит за рамки допустимых значений, то необходима расточка цилиндров. Покупка поршней ТОЛЬКО после описанных выше манипуляций.
— проверка плоскости блока на ровность (в случае сильной кривизны — шлифовка поверхности блока)
— естественно проверка коленвала, шатунов, вкладышей, маслонасоса и тд (то есть необходимо провести полную ревизию и проверку низа)
— доработка Ниво-поршней, а именно: выфрезеровка лужи 18-20 кубов для понижения СЖ, цековковки под клапана
— установка поршней, сборка низа

Ниво-поршни с лужей и цековками

Основной смысл при переборке низа — понижение СЖ, для возможности надувать много и без детонации. Много почитав, изучив и много сам попробовав я сделал вывод, что понижая СЖ на 1 единицу на атмосферном моторе потеря мощности составит 3-5%, однако при использовании наддува позволяет безпроблемно надувать 1 бар, соотвественно понижая еще больше — можно больше надувать. Ну это грубо говоря =) А поскольку нам нужен стабильный вариант на каждый день то нужен запас и степень рекомендую иметь в пределах 7.7-8.2.

истину глаголит

2. ГБЦ
— общая проверка на дефекты ГБЦ
— проверка ровности плоскости, в случае кривизны — шлифовка
— расширение каналов (не сильно обязательно, но очень желательно)
— гидрокомпенсаторы, клапана и вся фигня остается стандартная (конечно же в случае полной работоспособности)

3. Тем временем у токаря:
— флянец выходной из турбы (для даунпайпа)
— переходник с вазовской тормозной трубки на входное отверстие подачи масла на турбу

Остальное:
4. Замена форсунок
обязательно поменяйте резиновые колечки

5. Замена бензонасоса
walbro становится как родной

6. Если у вас безобраточная рампа, то делаем обратку используя магистраль отвода бензиновых газов адсорбера.

7. Подключаем регулятор давления топлива к системе
Если у вас безобраточная рампа то от обратной части рампы откручиваем пластиковый колпачек, достаем нипель который вкручен внутри, берем бензостойкую трубку подходящуюю по диаметру, надеваем на рампу, закрепляем хамутом. эту трубу соединяем со входом на регуляторе. Из выхода регулятора проводим трубку на нашу свежесделанную обратку. Если у вас рампа с обраткой — то ничего делать не надо.

8. Замена ресивера с дросселем
в случае, если ресивер перекрывает вход для патрубка картерных газов, необходимо переделать клапанную крышку под вход сбоку, пример как это сделать (листайте вниз страницы)

9. Установка выпускного коллектора

10. Примерочная установка турбы
поставили на коллектор, прикрутили парой болтов, на этом пока все

11. В поддон ввариваем вход под слив масла с турбы.
Вход должен находится максимально высоко, но и не забывайте сопоставлять с выходом маслослива из турбы.

12. Установка интеркуллера
тут зависит от того какой куллер взяли, от его размеров, толщины и тд. вцелом основное требование для фронтального ку

www.drive2.ru

Mitsubishi Legnum VR-4 ЛЕГНУМЯО 🐾 › Бортжурнал › Большие турбы ч.3 (или как грамотно подобрать турбину)

Т.к. предыдущие изыскания не привели к желаему результату, пишу окончательную часть блокбастера (надеюсь).
1 часть
2 часть
Для начала, определяемся сколько лошадей мы хотим, но помним — чем больше лошадей (и чем больше турбина), тем хуже низы. Нельзя купить турбу "на вырост" — рассчитанную на 800 лошадей а использовать только 500 — получится шляпа.
Причем низы будут не только хуже стока, может быть хуже атмо меньшего объёма. Например на 5ой на оборотах 2500 машина может откажется ускоряться. Связано это с многими вещами, узнавайте у тех, у кого уже есть искомая мощность таком же движке — каково это. Я буду писать, как подобрать турбину точно "в размер".
Допустим хотим 440 лошадей, турбин 2 так что нужно 220 лошадей с 1ой:
hp=220, Vдвиг =1.25л (т.к. на одну турбину половинка объема работает), VE предположим 0.8, обороты N максимальной мощности предположим 7000

Подбор холодной части
Читаем для общего развития очень доступно
По-быстрому считаем какой расход воздуха нужен от лошадей: AR=hp*0.000641746 = 220* 0.000641746=0.14 м3/с
Считаем степень сжатия () DR=AR*120000/(V*N*VE)=0.14*120000/(1.25*7000*0.8)=2,4
У нас получается точка Density Ratio(Pressure Ratio) /AirFlow Rate на максимальной мощности

линия на 2,0 вместо 2.4 но не суть


идем сюда выбираем турбину, на карте которой эта точка будет будет максимально близко к правой границе карты и в зоне эффективности около 70% . От верхней границы карты следует оставить запас ~0.5 Density Ratio, т.к. расчеты неидеальны и будут потери во впуске и на сжатии.
Холодное колесо подобрано.
С одним и тем же холодным колесом могут быть разные горячки: например у меня TF035HM-14GK а есть TD05-14G, и т.п. Какую выбрать?

Подбор горячего колеса турбины
Теперь о горячке, о которой пишут гораздо меньше. А точнее я вообще не нашёл, а жаль, это мне бы сэкономило чутка денег, может у вас получится…
Турбос в физическом смысле:
Чтобы сжать поступающий воздух нужно совершить работу холодным колесом. Эта работа передается через вал турбины от горячего колеса. Т.е. больше чем есть мощности на горячем колесе мы использовать не можем. Далее мощность на горячем колесе прямо пропорциональна площади выхода горячего колеса и разности давлений до/после турбины. Давление до мы не можем повышать выше определенного предела — т.к. двигатель не будет продуваться начнет детонировать. Давление после можно снизить — прямотоком, выхлопвбоком. Остается площадь горячего колеса — если выберем слишком маленькую — упадет мощность (нечем будет крутить холодное колесо), слишком большая — на низах турбина плохо будет раскручиваться, т.к. газам будет проще обогнуть мимо крыльчатки, чем раскрутить её.
Эмперически считаю для нашего двигателя 6a13tt (сток коллектора, не пиленные бошки, выхлоп 76мм но не в бок, аутлеты больше стока, горячка A/R 0.41) следующую формулу верной для расчета диаметра эксдюсера горячки в мм:
D=корень(hp*6.5)
hp — желаемые лошади на 1ой турбине, D — диаметр в мм
К примеру, хотим 440 лошадей, турбин 2, надо 220 на одной. 220*6.5=1430, корень =37.8мм
Наш двигатель не очень хорошо продувается особенно на верхах, поэтому для других двигателей возможен коэфф. 6.5 поменьше, по уму его стоит рассчитать заново для своей конфигурации, т.к. он зависит от продуваемости двигателя, выхлопа, объёма и прочее… Проще всего его узнать — взять чужой график мощности на большой турбине (макс. наддув которой кончается около отсечки) и на схожих модах по движку, сопоставить достигнутую мощность и диаметр exducera: k=D*D/hp.


Также стоит отметить если выбрать A/R слишком маленьким, то турбина не достигнет этих расчетных показателей, но зато раньше будет надувать чем её сестра с большим A/R. И другие моды, способствующие повышению лошадей сильно помогут — равнодлинные коллектора, выхлоп широкий или в бок, портинг голов, хороший даунпайп, распредвалы. Тогда можно будет выбрать более мелкую по диаметру горячего колеса турбину, моды обеспечат приход лошадей и на ней.

Как узнать что с моим турбо че то не так?
Если низы очень слабые, а наддув не падает даже после отсечки ( на 8000 к примеру) — горячая часть велика, т.е. идеал — когда наддув начинает падать в районе отсечки (пример проблемы это TD04L)
Если на стенде ( ну или 4ой передаче) наддув падает раньше достижения отсечки двигателем — холодная часть мала (яркий пример сток td03-7t)
Если наддув держится с момента достижения максимального крутящего момента и до отсечки, но выше его не поднять — горячая часть мала (ну это у меня так получилось на TF035HM), кстати о птичках… как ни прискорбно, у них оказалась горячка 35мм, что есть как у стока, поэтому и лошадей мало…
В будущем обязательно заменю, пока не до этого.
Ну и согласно новым расчетам идеальные турбы 6a13tt- где горячка 38мм:
Garrett 1752 например… если не будет части 4
Всем солнца!

www.drive2.ru

Как подобрать турбину к двигателю

Как подобрать турбину на автомобиль? – этот вопрос тревожит далеко не каждого автовладельца. Но тому, кому он, как говорится, «залез в печенку», он не даст покоя, пока вожделенная турбина не займет свое место в подкапотном пространстве.

Чтобы правильно ответить на вопрос как подобрать турбину к двигателю , нужно четко и явственно себе представлять, что же собою являет эта самая турбина, как ее наличие, либо отсутствие, влияет на двигатель, и что, собственно в недрах, этой самой турбины происходит.

Разберемся в этих вопросах по порядку их возникновения.

Итак, турбина, или турбокомпрессор автомобиля, являет собой небольшой агрегат, являющийся частью навесного оборудования двигателя. Этот самый турбокомпрессор соединен с двигателем непосредственно на участке между входным коллектором, по которому в двигатель попадает атмосферный воздух, и цилиндрами двигателя.

Вся работа турбины направлена на то, чтобы, создать большое давление и подать в цилиндры больший объем воздуха. Разумеется, топливная система, в зависимости от типа топлива, на котором ездит автомобиль, подает в цилиндры пропорционально большее количество топлива. Вследствие этого авто, на том же двигателе, получает значительно большую мощность.

Как работает турбина? То есть, что происходит в ней самой и за счет чего автомобиль получает ту самую большую мощность? Всё, оказывается, весьма просто. Вся система турбины, принципиально, сводится к тому, что на ее крыльчатку, подаются выхлопные газы из выхлопного коллектора, которые сообщают крутящий момент ее лопастям. Соответственно, лопасти и создают то самое давление воздуха.

Разумеется, коль крыльчатка турбины приводится в действие выхлопными газами, которые вырываются, фактически, непосредственно из цилиндров, температура самой турбины весьма высока. К тому же, на ее динамические части воздействуют еще и силы, рожденные в движении ее механизмов при очень высокой скорости вращения. Следовательно, для обслуживания столь горячего и шустрого агрегата, нужно и соответствующее моторное масло. Однако, это тема совершенно другого обзора, — не будем на нее отвлекаться.

Как подобрать турбину на авто

Как видно, всё не так уж и сложно. А раз так просто, то чего же ждать? – остается только выбрать себе турбину по душе, да по карману.

Однако, на самом деле, всё не так просто. Давление воздуха, а значит и мощность, сообщаемая турбиной не может увеличиваться до каких-то неопределенных или неконтролируемых пределов. Эти показатели должны соответствовать ряду характеристик самого автомобиля – его весу, трансмиссии, двигателю, выхлопной системе и, наконец, топливной аппаратуре. Всё должно быть согласовано одно с другим и сбалансировано.

Если все эти моменты учтены и Вы уверены, что установка турбины будет правильным решением, то остается решить только одно: как подобрать турбину на двигатель. Теперь следует определить, для какого типа езды будет использоваться турбированый автомобиль – для повседневного использования или для спортивных соревнований.

Самым распространенным и наиболее часто практикуемым вариантом манипуляций с турбинами является замена турбины. Чаще всего, процесс этот сводится к монтажу высокопоточного турбокомпрессора и, в некоторых случаях, с заменой крыльчатки турбины на большую. Такая модернизация позволяет, в некотором роде, облегчить нагрузку на турбину. Ведь, при этом, снижается давление на механизм от воздействия на большую крыльчатку выхлопных газов. А это, соответственно, позволит снизить скорости вращения и внутреннее давление при начальном раскручивании турбины. Также, достаточно часто, корпус турбины заменяется на корпус большего размера, что позволяет увеличить объем, проходящего через турбину, воздуха.

Разумеется, при таком серьёзном влиянии на автомобиль, как внесение изменений в конструкцию турбокомпрессора, следует учитывать, что конструкторское бюро производителя Вашего автомобиля подбирало турбину для этой модели исходя из определенных технических условий. И, прежде чем вносить такие изменения в столь важный агрегат автомобиля, следует взвесить соответствие будущих изменений с возможностями и запасом агрегатной прочности других узлов и механизмов автомобиля.

turbomaster.com.ua


Смотрите также